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__________________________________________________________________________________________ 

 

Abstract 

This work considers the thermal analysis of an incompressible third-grade magnetohydrodynamic (MHD) 

steady fluid flow in a pipe with variable fluid properties; together with convective cooling at the walls. The 

momentum and energy equations regulating the flow are solved numerically by using the Runge–Kutta 

integration algorithm, combined with shooting technique. The solutions obtained are used to determine the 

numerical procedures for bifurcation analysis, skin-friction, heat transfer rate and thermal stability to predict the 

safe and unsafe situations of hazard prevention.  
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Introduction 

The investigation of thermal analysis of a third-grade 

fluid flow through a circular cylindrical pipe with 

variable fluid properties and convective cooling at the 

walls under the influence of magnetic field strength 

has abundant industrial and engineering applications 

as shown by Fosdick and Rajagopal (1980), Makinde 

(2014), Adesanya and Falade (2015), and Kobo and 

Makinde (2010).  

 

Researchers have recently extended investigations to 

third-grade reactive fluids for their significance and 

roles in the production of hydrocarbon oils, grease, 

etc. Meanwhile, variable fluid properties such as 

viscosity and thermal conductivity, which describe 

the rate at which fluids conduct electricity and heat 

transfer with temperature gradients, are of high 

importance to enhance productivity in industries. 

However, as reported by Elgazery (2012), the 

appreciable relevance of hydromagnetic fluids exists 

in the refining of molten metals and non-metallic 

inclusions by the introduction of an electrically 

conducting fluid subject to magnetic field strengths 

that experience a force that results in current 

generation in the magnetohydrodynamic (MHD) fluid 

with applications in industrial and engineering 

processes. This improvement is needed in new 

technological trends to develop an appropriate 

mathematical model to understand fluid behaviour. 

 

Other researchers like Makinde (2012, 2014), 

Makinde and Aziz (2010), Ajadi (2009), Ahmad 

(2009), Yurusoy et al. (2008), Hayat et al. (2008) and 

Mahmoud (2009) have extensively examined the 

flow of third-grade fluids with different properties 

and characteristics to determine the thermophysical 

properties, such as thermal stability, to predict the 

safe and unsafe situations of hazard prevention, the 

rate of disturbance with the second law of 

thermodynamics and variable fluid properties. 

 

However, a considerable number of researchers 

mentioned above, have considered the properties of 

fluids to be constant but some of these properties can 

change with temperature especially when strong 

magnetic field strength is introduced as described by 

Elgazery (2012), Hayat et al. (2008), Mahmoud 

(2009), Ellahi and Riaz (2010), where efforts were 

made to critically examine the impact of magnetic 

field on the inner third-grade fluid flow through a 

pipe and especially in Ellahi and Riaz (2010) where 

viscosity depended upon the space coordinate. 

 

This paper extends the work of Chinyoka and 

Makinde (2010) by examining the effects of magnetic 

field strength and variable fluid properties like 

thermal conductivity and fluid viscosity on a reactive 

MHD flow through a circular cylindrical pipe with 

convective cooling at the walls. The governing 

equations are solved numerically using the Runge–

Kutta integration algorithm with shooting technique 

and implemented using a freely downloaded 

mathematical software (Maple software). 

 

Materials and Methods 

An incompressible, MHD steady flow of a third-

grade fluid in a circular cylindrical pipe with 

convective cooling at the walls was considered. The 

geometry of the problem is shown in Figure 1. The 
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fluid is electrically conducting under the influence of 

a transversely applied magnetic field   . Employing 

the cylindrical coordinates            with the   -axis 

coinciding with the axis of the pipe, such that      

is the radius of the pipe and   is the azimuthal angle. 

Neglecting induced magnetic field and chemical 

reactions, the linear velocity and energy equations 

describing the fluid flow in non-dimensionless form 

are as expressed by Chinyoka and Makinde (2010), 

Makinde (2012) and Okoya (2016). 

 

 
 

Figure 1: Geometry of the problem 
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The flow is symmetric about the z-axis; there is 

heat exchange at the pipe surface with the ambient 

temperature following Newton’s cooling law and 

then the appropriate boundary conditions are  
  

00  rat
rd

Td

rd

d
         (3)

    aratTTH
rd

Td
TK  0,0           (4) 

 

where    is the radial distance measured in the normal 

direction  , is the temperature dependent viscosity, 

 ̅ is the dimensional axial velocity, β3 is the 

material coefficient,   represents electrical 

conductivity,                the emerging pressure 

gradients in the axial direction,    is the dimensional 

modified pressure  ̅, is the absolute temperature, 

   ̅  is the temperature dependent thermal 

conductivity,   is the heat of reaction   , is the 

initial concentration of the reactant species,    is 

the rate constant, E is the activation energy, R is 

the universal gas constant,  ̅  is the absolute 

temperature of the surrounding environment, H is 

the surface heat transfer coefficient and   is the 

pipe radius. 

The Arrhenius model is usually used to describe 

the variations of viscosity with temperature in a 

variety of f luid  and  mass  flows because it is well 

known that the viscosity of a liquid decreases 

with increasing temperature. The Arrhenius model 

for viscosity can be written as follows: 

  









TR

E
T exp             (5) 

 

The temperature dependent thermal conductivity 

K of the fluid can be expressed in the form of  

Makinde (2009, 2012), Lacey and Wake (1982) as: 

  )(exp)( 00 TTMKTK            (6) 

where K0 is the material thermal conductivity at  ̅  

and M > 0 is the thermal conductivity exponent 

variation parameter. 

 

The following variables and parameters are 

introduced to non-dimensionalise equations (1)– (6): 
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where    is a reference velocity. Here r is the 

dimensionless perpendicular distance from the pipe 

axis,   is the dimensionless velocity Γ is the viscous 

heating parameter, Ha is the Hartmann number, 

  is the Frank–Kamenetskii parameter,   is the 

dimensionless temperature excess, C is the pressure 

gradient parameter,   is the non-Newtonian 

material parameter of the fluid,   is the activation 

energy parameter, Bi is the Biot number, n is the 

parameter representing the ratio of temperature-

dependent thermal conductivity to heat 

production,    is the material variation of 

viscosity at  ̅  and    is the material thermal 

conductivity at  ̅ . Using the above non-dimensional 

variables and parameters (7), equations (1)– (6) 

take the form: 
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subject to the following boundary conditions 
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The non-dimensionalised form of the temperature 

dependent viscosity is given by 
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
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exp          (12) 

The physical quantities of interest are the skin-

friction parameter    at the wall and the heat 

transfer rate at the wall, which is estimated in terms 

of Nusselt number (Nu) and are defined as 

follows: 

)1(),1( 11    rrf drdNudrdC  

            (13) 

 

The solutions to the governing equations (8) and (9), 

subject to the boundary conditions stated in equations 

(10) and (11), are solved using the Runge–Kutta 

method with shooting technique. Firstly, we observed 

that a singularity exists in equation (8) at r = 0. This 

singularity was handled by evaluating equation (8) 

using the L’Hospital rule as described by Okoya 

(2016). 
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Using equation (12), then equation (8) becomes 
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Putting equation (12) into (15), then (15) is 

simplified as 
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The nonlinear differential equaotins (16) and (9) are 

then transformed into first-order differential 

equations as follows: 
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Subject to the boundary conditions 
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where the prime denotes derivatives with respect to r 

and the undermined initial conditions            

are systematically assumed and evaluated iteratively. 

Then, equation (17) is solved numerically as an initial 

valued problem until the boundary condition at r = 1 

is satisfied. Convergence is attained for all given 

values of the parameters when the absolute value of 

the unknown,            for previous computations 

differs by 10
-8

 at r = 1. 

 

Consider the one bifurcation parameter family of a 

two-point boundary-valued problem 
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Such that a and b are on the interval where the radius 

of the circular cylinder lies and 
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dt
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The linearisation of equation (19) with respect to y 

is the boundary-valued problem. 
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where )(th


is a vector-valued  function that consists  
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of n components, 
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  is the Jacobian matrix, 
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Evaluated at bifurcation point ),( 00 y
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, the linearised 

problem in equation (21) has a nontrivial solution 
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. Hence, a bifurcation point 

is characterized by   
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Equation (23) is for a solution h


 of equation (21), 

which depends on ),( y


. Following Seydel (1979, 

2009) and Song et al. (1989), the branching system of 

differential equations regulating the fluid flow is 

given as: 
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Equation (24) can then be solved by any standard 

ODE solver. 

 

This section is used to calculate the branching 

behaviour of equations (8) and (24) with the 

boundary conditions (10) and (11). The bifurcation 

parameter in the equations is the Frank–Kamenettski 

parameter (  . The values of          and          

for varying various parameters are shown in Table 1. 

 
Table 1: Effects of Various Parameters on Thermal Criticality values in Arrhenius Model 

Λ Ha C N Γ Ε Bi                   

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

2 1 –1 0.05 1 0.1 5 1.88017641 1.58436341 

3 1 –1 0.05 1 0.1 5 1.87777144 1.58782094 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 2 –1 0.05 1 0.1 5 1.87680838 1.58850989 

1 3 –1 0.05 1 0.1 5 1.86619341 1.60051945 

1 1 –3 0.05 1 0.1 5 2.14147997 1.40207243 

1 1 –2 0.05 1 0.1 5 1.99502956 1.49623296 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 1 –1 –0.05 1 0.1 5 1.73782786 1.45904985 

1 1 –1 –0.01 1 0.1 5 1.79104276 1.50415420 

1 1 –1 0 1 0.1 5 1.80526468 1.51595364 

1 1 –1 0.01 1 0.1 5 1.81989150 1.52797663 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 1 –1 0.05 2 0.1 5 1.93004616 1.53499289 

1 1 –1 0.05 3 0.1 5 1.97910380 1.49231838 

1 1 –1 0.05 1 0 5 1.41936750 1.38025501 

1 1 –1 0.05 1 0.01 5 1.45285499 1.39687258 

1 1 –1 0.05 1 0.05 5 1.60961397 1.46956432 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 1 –1 0.05 1 0.1 5 1.88290254 1.57846568 

1 1 –1 0.05 1 0.1 10 1.89616971 1.89193806 

1 1 –1 0.05 1 0.1 15 1.89820788 2.01725704 

1 1 –1 0.05 1 0.1 1 x 102 1.89756548 2.25867856 

1 1 –1 0.05 1 0.1 1 x 103 1.89690300 2.30059490 

1 1 –1 0.05 1 0.1 1 x 104 1.89681983 2.30526873 

1 1 –1 0.05 1 0.1 1 x 108 1.89681898 2.30531596 

 

Results and Discussion  

The data in Table 1 shows that increasing the values 

of the non-Newtonian parameter (Λ), magnetic field 

parameter (Ha), pressure gradient (C), the ratio of 

temperature-dependent thermal conductivity (n) and 

Biot number Bi decreases maximum velocity, 

maximum temperature and the Nusselt number. 

However, increase in the Frank–Kamenettski 

parameter (δ) and viscous heating parameter (Γ) leads 

to corresponding increases in the Nusselt number, 

maximum velocity and maximum temperature. The 

skin friction rises with increasing values of non-

Newtonian parameter (Λ), magnetic field parameter 

(Ha), pressure gradient (C) and Biot number Bi but 
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decreases with the Frank–Kamenettski parameter (δ), 

viscous heating parameter (Γ) and the ratio of 

temperature-dependent thermal conductivity (n). 

 

Table 1 shows the effects of various parameters on 

the thermal criticality values in Arrhenius model. The 

        reduces with the rising values of Newtonian 

parameter (Λ), magnetic field parameter (Ha) and 

pressure gradient (C) while         rises with the 

rising values of the ratio of temperature-dependent

thermal conductivity (n), viscous heating parameter 

(Γ), activation energy parameter ( ) and Biot number 

Bi. Also,          increases as all the thermophysical 

parameters increase but decreases with increase in the 

viscous heating parameter (Γ). 

 

The computational results of the influence of the 

embedded thermophysical parameters on the 

maximum velocity      and heat transferred      

with the skin-friction and Nusselt number are shown 

in Table 2. 

 
Table 2: Effects of Various Parameters in Arrhenius Model 

Λ Ha C n Γ δ Bi              N u 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.204115 0.063069 –0.395639 0.101599 

3.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.187599 0.060228 –0.341705 0.096315 

5.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.176991 0.058475 –0.311991 0.093107 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.204115 0.063069 –0.395639 0.101599 

1.0 2.0 –1.0 0.5 1.0 0.1 5.0 0.140245 0.060619 –0.323882 0.088163 

1.0 3.0 –1.0 0.5 1.0 0.1 5.0 0.088815 0.054976 –0.258122 0.076575 

1.0 1.0 –1.5 0.5 1.0 0.1 5.0 0.293626 0.093401 –0.539172 0.157325 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.204115 0.063069 –0.395639 0.101599 

1.0 1.0 –0.5 0.5 1.0 0.1 5.0 0.105610 0.042898 –0.216072 0.064320 

1.0 1.0 –1.0 –1.0 1.0 0.1 5.0 0.204181 0.063998 –0.395634 0.102678 

1.0 1.0 –1.0 0.0 1.0 0.1 5.0 0.204115 0.063069 –0.395639 0.101599 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.203474 0.054921 –0.395348 0.093995 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.204115 0.063069 –0.395639 0.101599 

1.0 1.0 –1.0 0.5 2.0 0.1 5.0 0.207141 0.090999 –0.398029 0.152974 

1.0 1.0 –1.0 0.5 3.0 0.1 5.0 0.210234 0.119476 –0.400468 0.205025 

1.0 1.0 –1.0 0.5 1.0 0.01 5.0 0.200378 0.022889 –0.393223 0.048264 

1.0 1.0 –1.0 0.5 1.0 0.05 5.0 0.201761 0.037287 –0.394156 0.068813 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.203526 0.055605 –0.395344 0.094921 

1.0 1.0 –1.0 0.5 1.0 0.1 3.0 0.205396 0.068904 –0.398528 0.095299 

1.0 1.0 –1.0 0.5 1.0 0.1 5.0 0.203526 0.055605 –0.395344 0.094921 

1.0 1.0 –1.0 0.5 1.0 0.1 10.0 0.202149 0.045812 –0.392990 0.094641 

 

The present numerical scheme is validated by 

comparing the maximum velocity,      and 

temperature maximum,      with exiting numerical 

results available in the Literature as shown in Table 

3. It can be seen that the computed values of       

and      by the equations (17) and (18) are in 

perfect agreement with previous results. 

 
Table 3: Values of     (0) and     (0) compared with 

Okoya (2016) 

Λ           

 Ref Present Ref Present 

0 0.252650 0.252650 0.015811 0.015811 

5 0.192455 0.192455 0.012149 0.012149 

10 0.171515 0.171515 0.010810 0.010810 

15 0.158764 0.158764 0.009989 0.009990 

Γ = −C = 1, H a = n = δ = ε = 0, Bi = 10
-8 

 
The graphical presentation showing the momentum 

and energy distributions for different values of the 

non-Newtonian parameter (Λ) are shown in Figures 2 

and 3. The plots reveal that both fluid motion and 

energy reduce as Λ increases. Figures 4 and 5 display 

the velocity and temperature profiles, respectively, 

for the variations in the value of the magnetic field 

strength (Ha). The increase in Ha retards the fluid 

motion and heat transfer due to the presence of 

Lorentz force across the flow channel. 

 

The velocity and temperature profiles revealing the 

graphical representations of the impact of the ratio of 

temperature-dependent thermal conductivity (n) are 

shown in Figures 6 and 7, respectively. It can be seen 

that velocity and temperature decrease as thermal 

conductivity (n) increases from −1 to +1. This is due 

to the role of activation energy and wall temperature 

in the flow channel. The velocity and temperature 

distributions showing the impact of viscous heating 

(Γ) are shown in Figures 8 and 9, respectively. On a 

normal note, the fluid motion and temperature rise 

due to the viscous heating within the flow region. 

Moreover, there are increases in fluid motion and 

temperature as the Frank–Kamenettski parameter (δ) 

increases as displayed in Figures 10 and 11 due to the 
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compound effects of the initial concentrations of the 

reactant species, heat of reaction and the radius of the 

circular cylindrical pipe. 

 

Finally, Figures 12 and 13 display the effects of the 

convective cooling parameter (Bi) on the velocity and 

temperature distributions. These Figures revealed that 

the fluid motion and temperature were reduced with 

the rising values of Bi; it mainly depends on the 

magnetic field strength and the thermal conductivity 

of the material medium.   
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(2008) Perturbation solution for a third-

grade fluid flowing between parallel plates.  

Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical 

Engineering Science, 222(4): 653–656. 

 

Thermal Analysis of a Reactive MHD Flow…                                  50 
 


