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Abstract 

In this paper, a direct solution for some well-known classes of Lane–Emden-type second-order nonlinear 

ordinary differential equations is proposed, without converting them into a first-order system of equations by 

using a new class of third-derivative block multistep methods. These methods were derived from a continuous 

scheme through an interpolation and collocation technique and are assembled in block forms to produce the 

numerical solution in the specified interval on the entire range of integration. The properties of the block method 

are discussed and the efficiency of the method is shown when applied on some second-order nonlinear Lane–

Emden-type differential equations. It was observed that the method was consistent, zero stable, convergent and 

is stable in the interval [–4.4, 0]. The result shows that the method is suitable for the solution of the nonlinear 

Lane–Emden-type equations and performs better when compared to those in the Literature.  
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Introduction 

Consider the general second order equation  

     (      )         (  )           (  )                           

                                                                       (1) 

where             are continuous functions, 

and m is the dimension of the system. 
 

The second order nonlinear Lane–Emden-type 

equation is generally formulated as  

                      xqyrxpy
x

y 


,               

    0,)0(0,0 yyx                    (2) 

where  ,   are real constants p(x), r(y) and q(x) are 

some given functions. For other special forms of r(y), 

the well-known Lane–Emden equations are used to 

model several phenomena in mathematical physics 

and astrophysics such as the theory of stellar 

structure, the thermal behaviour of a spherical cloud 

of gas, isothermal gas spheres and the theory of 

thermionic currents (Hojjati and  Parand, 2011).  

 

If   0,2  xq  then equation (1) becomes  

                       0
2

 yrxpy
x
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Equation (3) is a special case of (1) and is called the 

generalised Emden–Fowler differential equation 

(Parand and Shanini, 2010). Several second-order 

non-linear ordinary differential equations of Lane–

Emden-type are derived as special cases of (3). 

Examples of such are: when r(y) =   , p(x) = 1 then 

(3) becomes 

0
2
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,   10,0)0(  yy             (4) 

 

According to Davis (1962) and Shawagfeh (1993), 

equation (4) is referred to as the standard Lane–

Emden equation, which is used in the modelling of 

temperature variations of a spherical cloud gas under 

the mutual attraction of its molecules subject to the 

law of classical thermodynamics.  

Also, if       1,2

3
2  xpCyyr  equation (3) 

yields     00,1)0(  yy                                 (5) 

 

Equation (5) is known as the white dwarf equation, 

introduced by Davis (1962) in the study of the 

gravitational potential of the degenerate white dwarf 

stars. In recent times, analytical solutions have been 

proffered for the solution of equation (1) (He, 2003; 

Liao, 2003) but the main difficulty arises at the point 

x = 0, called singular point. This has prompted several 

researchers to propose other techniques, which are 

based on either series solutions or perturbation 

techniques. These include Shawagfeh (1993), 

Wazwaz (2001), Mandelzweig and Tabakin (2001), 

He (2003), Horedt (2004), Yousefi (2006), Ramos 

(2008), Parand et al. (2009) and Shiralashetti et al. 

(2015). Despite the successes recorded by earlier 

researchers on the Lane–Emden-type equation (2), 

most of the methods used are analytical or semi-
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analytical-based. Numerical methods such as the 

second derivative multistep method by Hojjati and 

Parand (2011) have been proposed for the solution of 

the Lane–Emden-type problems using the collocation 

and interpolation approach. These methods are 

implemented by first reducing the equation (1) to a 

first-order system of equations.  

 

Thus, in this paper, we propose a third derivative 

block algorithm (TDBA) through the collocation and 

interpolation technique as in the block Nyström 

method (Jator and Oladejo, 2017; Okunuga et al., 

2012) since the technique produces a continuous 

scheme, which is used to derive the complementary 

and the main method that shall be used together as a 

single block algorithm for the direct solution of the 

Lane–Emden-type problems (1) without reducing it to 

system of first-order equations.  

 

To this end, a new third-derivative block method has 

been developed, analysed and implemented as a self-

starting method on some well-known classes of 

Lane–Emden-type second-order nonlinear ordinary 

differential equations, without converting them into 

first-order system of equations.  

 

Materials and Methods 

Derivation  

In order to develop the third-derivative block 

algorithm (TDBA), the interval              is 

considered. Assuming that the exact solution to (4) is 

approximated by a power series of the form,  
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where b0, b1,…, b7, are coefficients to be uniquely 

determined. In order to determine these coefficients, 

the following eight conditions must be satisfied. 
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By differentiating (6) twice and thrice, we obtain, respectively: 
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By using (6) and (8) in the conditions given in (7) we obtain a system of nonlinear equations of the form, which 

is solved using the Gaussian elimination method, enhanced by Maple 17, to obtain the unknown coefficients 

           .  

 

These coefficients are then substituted into (6) to get the continuous form of the Method given as 
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where  nn xxh  1 . 

Differentiating (10) we obtain the first derivative as        xv
dx

d
xv                           (11)   

We assume that yn is the numerical approximation to the analytical solution v(xn),   
 , is the numerical 

approximation to  fn+jh  is the numerical approximation to  f(xn+jh, yn+jh, y’n+jh).  

In order to obtain the v’(xn) main methods, equation (10) was evaluated to give the following: 
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The additional methods are obtained by evaluating (11) to give the following: 
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The discrete forms of equations (12) and (13) are given as follows 
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Convergence Analysis 

Basic Definitions   

The methods generated by (12), (14) and (15) are combined to give the TDBA which is conveniently analyzed 

and implemented in a block-by-block fashion by defining the vectors ,,,, 11   FFYY  as follows: 

 Tnnnnnn yhyhyhyyyY 321321 ,,,,,    

 Tnnnnnn hgghghfffF 321321 ,,,,,   

 Tnnnnnnnn hyhyhyyhyyyyY ,,,,,,, 1231231     

 

Thus, the TDBA is given by 
     

 FBhYAYA 12
1

01                                                    (16)
 

where N,,1 , 3,,1,0  Nn  ,    1,0, rA r  ,  1B  are 8 by 8 matrices whose entries are given by the 

coefficients of (14) and (15) 
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Definition 1. The TDBA (16) is said to be consistent 

if it has order p   . 

 

Definition 2. The TDBA (16) is zero stable provided 

the roots Rj, j = 1,…, 2k of its first characteristic 
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polynomial satisfy |  |  , j = 1,…, 2k and for those 

roots with |  |   , the multiplicity does not exceed 2 

(Fatunla, 1991). 

 

Local Truncation Error 

The local truncation error associated with the third-

derivative block algorithm can be represented by the 

linear difference operator 

   ( )    ∑   (     )       
  (     )

 

   

      
   (     )                           

 

Assuming that y(x) is sufficiently differentiable, the 

terms in (16) can be expanded as a Taylor series 

about the point    to obtain the expressions for the 

LTEs as: 
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where ,2,1,0, iCi are constant coefficients. 

 

The TDBA is said to have algebraic order of accuracy 
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such that the local truncation error
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where .  is the maximum norm.  Therefore, 2qC  

is the local truncation error of the method given by 

the vector  Tnnnnnn yhyhyhyyy 321321 ,,,,,    

which is a member of the block method (15) and is 

given, respectively, by  

T
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8

with order   Tq 6,6,6,6,6,6 . 

 

Zero Stability 

The zero stability of the TDBA is determined as the 

limit   tends to zero. Thus as     the method (16) 

tends to the difference system 

                                                    
   

1
01

  YAYA  

which is normalised to obtain the first characteristic 

polynomial  ( ) given by  

     ( )     (  ( )   ( ))     (   )               

The block method (16) is zero stable for  ( )  

  and satisfied |  |             and for those 

roots with |  |     the multiplicity is simple and it 

does not exceed 2. Therefore the block method is 

zero-stable. 

Linear Stability  
The linear stability property of the TDBM is 

discussed by applying (16) to the scalar test equation    

       

where   is supposed to run through the negative 

eigenvalues of the Jacobian matrix   
  

  
  (Sommeijer, 

1993).  

 

Letting z        it is shown that the application of 

(16) to the test equation yields 
  

   yzMy 1 ,
 

 ( )  ( ( )    ( ))
  

( ( ))              (18) 

where  ( ) is the amplification matrix that 

determines the stability of the method and its 

eigenvalues are the amplification factors. 

 

Definition 4. The interval         is the stability 

interval, if in this interval  ( ( ))   , where 

 ( ( )) is the spectral radius of  ( ) and    is the 

stability boundary (see Sommeijer, 1993). Calculating 

the zeros of the polynomials   (  )  it is easily 

deduced that   ( )                         

               . 

 

Numerical Examples 
The TDBA was tested on some second-order 

nonlinear singular initial value problems of Lane–

Emden-type differential equations to illustrate its 

accuracy and efficiency. A constant step-size is used 

in all the numerical examples. All computations are 

carried out using written codes in Maple 8.0.  The 

maximum absolute error of the approximate solution 

on         is calculated as  

             | ( )     |  

The rate of convergence (ROC) is calculated using 

the formula                                          

          (
       

      )                        (19) 

 

where        is the error obtained using the step-size 

 .  

 

Example 1. The white dwarf equation is considered, 

introduced in Davis (1962) in the study of 

gravitational potential of the degenerate white dwarf 

stars. 

   ( )  
 

 
  ( )  (    )

 

        ( )         ( )     

It is solved with the TDBA for C = 0.2, 0.4, 0.6 and 

0.8, where at C = 0. The example 1 reduces to the 

standard Lane–Emden equation of index m = 3. 

 

Example 2. Consider the standard Lane–Emden 

equation that was used to model the thermal 

behaviour of a spherical cloud of gas acting under the 
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mutual attraction of its molecules and subject to the 

classical laws of thermodynamics. 

   ( )  
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 ( )             ( )        

 

 
 

Figure 1: Numerical Result using the TDBM (Example 

1) 
 
Table 1: Results with h = 0.01 and m = 3, using TDBA 

(Example 2)  

X TDBA Hojjati and 

Parand (2011) 

Horedt 

(2004) 

0.50 0.959839069944850 0.959839069883 0.959839 

1.00 0.855057568588628 0.855057568546 0.855058 

5.00 0.110819835139621 0.110819835160 0.110820 

6.00 0.043737983889702 0.043737983910 0.043738 

 

 
Figure 2: Numerical Result using TDBA (Example 2) 
 

Example 3. Consider the nonlinear singular initial 

value problem, which was also solved by Shiralashetti 

et al. (2015) using Haar Wavelet Collocation Method, 

    ( )  
 

 
  ( )      ( )     ( )   ( ( ))           

 ( )      ( )    

where the analytic solution is given as 

     ( )      
         

 

Table 2: Comparison of Errors (Example 3) 

N TDBA ROC HWCM 

4               

8            1.15            

16            5.69 2.739      

32             5.87            

64             5.98             

128             5.99 4.275      
 

Example 4. Consider the nonlinear second-order 

singular IVP that was solved using BVM3, BVM4 by 

Okunuga et al. (2012), and Shiralashetti et al. (2015) 

using Haar Wavelet Collocation Method (HWCM). 

     
 

 
     (     

 
 )           ( )    

  ( )               
where the analytic solution is given as 

      ( )      (    ) 
 

Table 3: Results with h = 0.01 (Example 4) 

X TDBA p=6 BVM3 p=4 BVM4 p=5 

                                     
                                     
                                     
                                     
 

Table 4: Comparison of Errors (Example 4) 

h TDBA HWCM 

0.25                

0.125                        

0.0625            4.701      

0.03125                         

0.015625                          

0.0078125             7.555      
 

 
Figure 3: Numerical Result using TDBM (Problem 3.4) 

 

Example 5. Consider the homogeneous singular IVP 

of the Lane–Emden-type equation, which has been 

solved by Shiralashetti et al. (2015) using HWCM, 

    ( )  
 

 
  ( )   (     )  ( )        ( )    

  ( )                

where the analytic solution is given as  

            ( )     
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Table 5: Comparison of Errors (Example 5) 

N TDBM ROC HWCM 

8                        

16            6.65            

32            6.05 3.141      

64             6.44            

128             6.07             

 

Results and Discussion 

Figure 1 depicts the numerical solution trajectory 

using TDBA for different values of C at m = 3 for 

Example 1. This trajectory showed that it was in 

conformity with that of Davis (1962). In Table 1, the 

numerical results showed the superiority of the results 

obtained using TDBA over those obtained by Hojjati 

and Parand (2011) and Horedt (2004). The solution 

trajectory for Example 2 is shown in Figure 2. Table 2 

shows the comparison of HWCM by Shiralashetti et 

al. (2015) and TDBA. It is seen that TDBA is more 

accurate with smaller errors at all points considered. 

 

Figure 3 represents the solution trajectory to the exact 

solution. It shows a comparison of the TDBA to the 

method by Okunuga et al. (2012) for different end 

points. It is obvious, from Table 3, that our method is 

more accurate since the order is higher than that of 

Okunuga et al. (2012). Table 4 summarises the results 

obtained for Example 4 for different step lengths  , 

the maximum errors were compared with those of 

Shiralashetti et al. (2015). The TDBA was superior 

with a larger  . Table 5 shows that our method is 

consistent with the order of the method given by ROC 

and for different end points. The TDBA is more 

accurate than those reported by Shiralashetti et al. 

(2015). 

 

Conclusion 

In this paper, a 3-step third-derivative block algorithm 

(TDBA) for the direct solution of the Lane–Emden-

type of second-order nonlinear initial value problems 

with singularity at x = 0 have been considered. The 

TDBA was applied directly to the Lane–Emden-type 

ordinary differential equations without reducing the 

differential equation to systems of first-order 

equation. The method was implemented in a block-

by-block fashion and so does not suffer the 

disadvantages of requiring starting values and 

predictors, which are inherent in predictor–corrector 

methods. In general, it is shown that the computed 

ROC is higher but consistent with the theoretical 

order 6 of the TDBA. Numerical examples performed 

using TDBA show that the method is accurate and 

efficient. 
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