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Abstract

In this paper, a direct solution for some well-known classes of Lane—Emden-type second-order nonlinear
ordinary differential equations is proposed, without converting them into a first-order system of equations by
using a new class of third-derivative block multistep methods. These methods were derived from a continuous
scheme through an interpolation and collocation technique and are assembled in block forms to produce the
numerical solution in the specified interval on the entire range of integration. The properties of the block method
are discussed and the efficiency of the method is shown when applied on some second-order nonlinear Lane—
Emden-type differential equations. It was observed that the method was consistent, zero stable, convergent and
is stable in the interval [-4.4, 0]. The result shows that the method is suitable for the solution of the nonlinear

Lane—Emden-type equations and performs better when compared to those in the Literature.
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Introduction
Consider the general second order equation

y'=fyy), yx) =vo ¥ () =Y

X € [xo, xn] D
where f: R x R*™ — R™ are continuous functions,
and m is the dimension of the system.

The second order nonlinear
equation is generally formulated as

y”+§y’+ p(x)r(y)=a(x),
yO) =a , y(0)=5 )

where a, 8 are real constants p(x), r(y) and q(x) are
some given functions. For other special forms of r(y),
the well-known Lane-Emden equations are used to
model several phenomena in mathematical physics
and astrophysics such as the theory of stellar
structure, the thermal behaviour of a spherical cloud
of gas, isothermal gas spheres and the theory of
thermionic currents (Hojjati and Parand, 2011).

Lane-Emden-type

x>0, >0

If =2, q(x)=0 then equation (1) becomes
2
y'+ v+ pix)r(y)=0,
yO=a . y(©)=5 ®

Equation (3) is a special case of (1) and is called the
generalised Emden—Fowler differential equation
(Parand and Shanini, 2010). Several second-order
non-linear ordinary differential equations of Lane-
Emden-type are derived as special cases of (3).

Examples of such are: when r(y) = y™, p(x) = 1 then
(3) becomes

" 2 ! !
Y+ Y Hym=0,y©@=0, y0-1 &

According to Davis (1962) and Shawagfeh (1993),
equation (4) is referred to as the standard Lane—
Emden equation, which is used in the modelling of
temperature variations of a spherical cloud gas under
the mutual attraction of its molecules subject to the
law of classical thermodynamics.

3
Also, if r(y)=(y2—C)z , p(x)=1 equation (3)
yields y(0)=1 , y'(0)=0 (5)

Equation (5) is known as the white dwarf equation,
introduced by Davis (1962) in the study of the
gravitational potential of the degenerate white dwarf
stars. In recent times, analytical solutions have been
proffered for the solution of equation (1) (He, 2003;
Liao, 2003) but the main difficulty arises at the point
x =0, called singular point. This has prompted several
researchers to propose other techniques, which are
based on either series solutions or perturbation
techniques. These include Shawagfeh (1993),
Wazwaz (2001), Mandelzweig and Tabakin (2001),
He (2003), Horedt (2004), Yousefi (2006), Ramos
(2008), Parand et al. (2009) and Shiralashetti et al.
(2015). Despite the successes recorded by earlier
researchers on the Lane-Emden-type equation (2),
most of the methods used are analytical or semi-
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analytical-based. Numerical methods such as the
second derivative multistep method by Hojjati and
Parand (2011) have been proposed for the solution of
the Lane—Emden-type problems using the collocation
and interpolation approach. These methods are
implemented by first reducing the equation (1) to a
first-order system of equations.

Thus, in this paper, we propose a third derivative
block algorithm (TDBA) through the collocation and
interpolation technique as in the block Nystrom
method (Jator and Oladejo, 2017; Okunuga et al.,
2012) since the technique produces a continuous
scheme, which is used to derive the complementary
and the main method that shall be used together as a
single block algorithm for the direct solution of the
Lane—Emden-type problems (1) without reducing it to
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starting method on some well-known classes of
Lane-Emden-type second-order nonlinear ordinary
differential equations, without converting them into
first-order system of equations.

Materials and Methods

Derivation

In order to develop the third-derivative block
algorithm (TDBA), the interval x,, <x < x,.4 iS
considered. Assuming that the exact solution to (4) is
approximated by a power series of the form,

(6)

where by, by,..., by, are coefficients to be uniquely
determined. In order to determine these coefficients,
the following eight conditions must be satisfied.

v(x)= 5 bjx
j=0

system of first-order equations. V(X0)= Ynsi =01
To this end, a new third-derivative block method has VN(X“): fosi =123 (7
been developed, analysed and implemented as a self- V(%)= Onsi i=123,
By differentiating (6) twice and thrice, we obtain, respectively:
7., . ,
v'(x)= _ZZJ(J ~1pjxi-2=f(xy,y)
J:
" 7.0, . : dif(x,y,y
v(x)= J_§ZJ(J—1)(J—2)DJ><J‘3=—( (dxy ) ®)

By using (6) and (8) in the conditions given in (7) we obtain a system of nonlinear equations of the form, which
is solved using the Gaussian elimination method, enhanced by Maple 17, to obtain the unknown coefficients

b, j=01,..7.
1 X, X2 X X Xq Xq xo!  [bo| [ ¥n |
2 3 4 5 6 7
1 Xps1 Xn1® Xnoa Xn+1 Xn+1 Xn+1 Xn+1 by Yn+1
0 0 2 Xy 12Xpa1’ 20%n.S  30Xp.yt  42%n..0 [b2| | fas
0 0 2 BXpyp 12Xp,0° 20Xp.p0  30xn.,  42%n,,° |Ds|_| fas2 )
0 0 2 6Xpe3 12X4.3° 20Xp.a  30Xy.3t  42%,.30 [Pa| | fass
0 0 0 6 24X,y  60X,.1> 120X, 210%,..* [bs | | 9nu
0 0 0 6 24Xy, 60Xyip° 120%,.,° 210%,.," |be | | ns2
0o o o0 6 24Xy.3 60Xy.s° 120X,,2° 210%n.s" [b7] [ Onss]
These coefficients are then substituted into (6) to get the continuous form of the Method given as
1 3 3
v(x) = > a (X)¥n+j +h2 _Zlﬂj (x) foij +h3 =7 (X)n+ j (10)
i= i= i=
where h=Xx,, —X,.
Differentiating (10) we obtain the first derivative as  v'(x)= div(x) (11)
X

We assume that y, is the numerical approximation to the analytical solution v(x,), y,, is the numerical
approximation to fy.jn is the numerical approximation to f(Xnjn, Yn+jhs ¥ nejn)-
In order to obtain the v’(x,) main methods, equation (10) was evaluated to give the following:

. . 3 . 3 . .
Yn+i = _(' _1)Yn +1 Ypy +h? 'Zlﬂj O fnj+ h3 _Zl7j MDgnej » =23 12)
i= i=
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The additional methods are obtained by evaluating (11) to give the following:

3 ——= 3 —— B
hyhii ==Yn + Ynaa +h?2 _Zlﬁj Ofnj+ h3 _217j MDIn+j 1=0,1,23 (13)
1= 1=
The discrete forms of equations (12) and (13) are given as follows
29 11 61 3 3
Yn+2 ==Yn +2Y¥nn 120 h2fn+ 5 h2fn.2 +@h2 fre3 _gh39n+1 -h3gn2 20 h3gn.3
14)
7 11 23 a7 13
Yn+3 =—2Yn +3Yn41 — 20 h2fnq+ 5 h2fno+ 20 h2f, 35— 0 h3gn1 —2h3gp,o - 0 h3gn.3
, 5717 59 3253 212 751 97
hyn ==Yn + Yns1 +ﬁh2 fo 30 2fhi2 _ﬁhz fois+ Eh3gn+l "‘% h3gn.2 +@ h3gn.3
463 17 407 1067 97 241
hy .1 =-y,+ ——h2f,, 1 +—h2f,,» +——h2f,, o ———h3 ——h3 —-——h8
Yn+1 =—Yn * ¥Yn41 gag | it g2 s n+3~ 1580 On+1 105 On+2 1680 9n+3 )
, 73 11 297 61 229 131
hYhe2 ==Yn + Yni1 “560 h2fy41 +Eh2 fne2 +%h2 fhis _ﬁhsgnﬂ _2_10h39n+2 —%h3gn+3
71 49 799 191 97 353
hyl . a=—-y, + ———h2f, +—h2f, o +——h2f, . ——h3 ———hs3 ——n3
Yn+3 =—Yn T ¥Ynu1 gag | it 3y n+2 ¥ a0 n+3~ 336 On+1 105 On+2 1680 On+3

Convergence Analysis
Basic Definitions
The methods generated by (12), (14) and (15) are combined to give the TDBA which is conveniently analyzed

and implemented in a block-by-block fashion by defining the vectors Y_,Y_,, F_,F_,, asfollows:
Yo = (Vi1 Yni2: Yneas Whia Wheo yhes )1

For = (fos1s frv2s fiss N Onit N Gnezs s )

Yo 1= (Va3 Yn-2:Yn-1, Yoo Whoas W2,y o, by )

Thus, the TDBA is given by

Al = Al),_ _; +h2BOF, (16)

where @=1----N, n=0,1---,N-3, A), r=0,1,B@ are 8 by 8 matrices whose entries are given by the
coefficients of (14) and (15)

-1 00 0 0 0 00 -100 -1
[—210000] [00—1000]
a0 =|=3 0 1.0 0 0 Jq@ [0 0 =2 00 o0
-1 00 10 0 00 -100 0
-1 000 10 00 -100 0
-1 000 0 1 00 -1 00 0

- 5717 _2 3253 2 E i

1680 30 1680 105 210 168

_2» st _3 -1 _3

120 15 120 5 20

B O (A S |

@ _ 20 5 20 40 40

BU=|lae v a0 e o7 _am

840 30 840 1680 105 1680

7 297 _ 61 229 131

560 10 560 105 210 840

- v 79 _ 11 97 _ 353

840 30 840 336 105 1680-

Definition 1. The TDBA (16) is said to be consistent  Definition 2. The TDBA (16) is zero stable provided
if it has order p = 1. the roots R;, j = 1,..., 2k of its first characteristic
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polynomial satisfy |les 1,j=1,..., 2k and for those
roots with |R;| = 1, the multiplicity does not exceed 2
(Fatunla, 1991).

Local Truncation Error
The local truncation error associated with the third-
derivative block algorithm can be represented by the
linear difference operator

k

LGkl = ) ayyGen +Jh) = h26;y" Gon + 1)
=0
— h3y;y" (e + jR)

Assuming that y(x) is sufficiently differentiable, the
terms in (16) can be expanded as a Taylor series
about the point x,, to obtain the expressions for the
LTEs as:

L[y(x) : h] =
= Coy(x)+ Cihy'(x)+ Coh2y"(x)+.
where Cj,i=0,12,...are constant coefficients.

The TDBA is said to have algebraic order of accuracy
q if
Co=C=Cy...C4=0,
such that the local truncation error
|Ex = Cqrah®+2 + O(h9+3)

Cq+1=0, Cq+2¢0

7)
where ||| is the maximum norm. Therefore, Cq. ,
is the local truncation error of the method given by

’ ! ’ T
the vector (Yn+1v Yn+2: Yn+3s Wit hYnso, hYn+3)
which is a member of the block method (15) and is
given, respectively, by

Cg =

T
5501 659 449 1283 449 1411
604800 302400 100800 604800 201600 604800

with order q=(6,6,6,6,6,6)" .

Zero Stability

The zero stability of the TDBA is determined as the
limit h tends to zero. Thus as h — 0 the method (16)
tends to the difference system

Ay = Al), 4
which is normalised to obtain the first characteristic
polynomial p(R) given by

p(R) = det(RAW — A®) = —R*(R — 1)?
The block method (16) is zero stable for p(R) =
Oand satisfied |R;| <1,j=1,..,2kand for those
roots with |R;| = 1, the multiplicity is simple and it
does not exceed 2. Therefore the block method is
zero-stable.
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Linear Stability

The linear stability property of the TDBM is

discussed by applying (16) to the scalar test equation
yll — Ay

where Ais supposed to run through the negative

eigenvalues of the Jacobian matrix Z—f (Sommeijer,

y
1993).

Letting z = Ah?, it is shown that the application of
(16) to the test equation yields  y_ .1 =M(z)y,

M(z) = (AD — zB®) ™ (4®) (18)
where M(z)is the amplification matrix that
determines the stability of the method and its
eigenvalues are the amplification factors.

Definition 4. The interval [—pB,, 0] is the stability
interval, if in this interval p(M(z)) <1, where
p(M(z)) is the spectral radius of M(z) and B, is the

-+ Cqhy(x) + stability boundary (see Sommeijer, 1993). Calculating

the zeros of the polynomials R;(z), it is easily
deduced that R;(z) =20, j = 1,2,3 z € [-4.4,0],
yielding B, = 4.4.

Numerical Examples
The TDBA was tested on some second-order
nonlinear singular initial value problems of Lane—
Emden-type differential equations to illustrate its
accuracy and efficiency. A constant step-size is used
in all the numerical examples. All computations are
carried out using written codes in Maple 8.0. The
maximum absolute error of the approximate solution
on [x,, xy] is calculated as

Error = Max|y(x) — y|
The rate of convergence (ROC) is calculated using
the formula

h
ROC = log, (227) (19)

Errorh

where Error” is the error obtained using the step-size
h.

Example 1. The white dwarf equation is considered,
introduced in Davis (1962) in the study of
gravitational potential of the degenerate white dwarf
stars.

y'(x) +,2-Cy'(x) + (% - C)z =0, y(0)=1, y'(0)=0
It is solved with the TDBA for C = 0.2, 0.4, 0.6 and

0.8, where at C = 0. The example 1 reduces to the
standard Lane—Emden equation of index m = 3.

Example 2. Consider the standard Lane—Emden
equation that was used to model the thermal
behaviour of a spherical cloud of gas acting under the



J. Sci. Res. Dev. 2018, 18(1): 37-42

mutual attraction of its molecules and subject to the
classical laws of thermodynamics.
Y00 +2y' () +y™(x) =0,

y(0)=1 y'(0)=0, x>0

5

Figure 1: Numerical Result using the TDBM (Example
1

Table 1: Results with h = 0.01 and m = 3, using TDBA
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Table 2: Comparison of Errors (Example 3)

N TDBA ROC HWCM
4 1.901 x 1077 —
8 4211x1077 1.15 1.101 x 1073
16 8.183 x 10~° 5.69 2.739% 1074
32 1.401 x 10710 5.87 6.841 x 1075
64 2.226 x 10712 5.98 1.907 x 1075
128  3.491x 10714 5.99 4.275% 10~°

Example 4. Consider the nonlinear second-order
singular VP that was solved using BVM3, BVM4 by
Okunuga et al. (2012), and Shiralashetti et al. (2015)
using Haar Wavelet Collocation Method (HWCM).

2 y
" +;y’ + 4(263’ + eZ) =0, y(0)=0,
y'(0) =0, x €[0,1]
where the analytic solution is given as
y(x) = =2In(1 + x?)

Table 3: Results with h =0.01 (Example 4)

X TDBA p=6 BVM3p=4 _ BVM4p=5
0.25 273x10°®  935x10°° 3.04x 10710
0.50 569x10°%  202x107®  3.09x 1071
0.75 151x10"2  972x10° 5.39x 10710
1.00 150x107'%2  424x10™° 3.34x 10"

(Example 2)
X TDBA Hojjati and Horedt
Parand (2011) (2004)
0.50  0.959839069944850  0.959839069883 0.959839
1.00  0.855057568588628  0.855057568546 0.855058
5.00 0.110819835139621  0.110819835160 0.110820
6.00  0.043737983889702  0.043737983910 0.043738

Figure 2: Numerical Result using TDBA (Example 2)

Example 3. Consider the nonlinear singular initial
value problem, which was also solved by Shiralashetti
et al. (2015) using Haar Wavelet Collocation Method,

6
')+ -y (0 + 14y(0) + 4y(x)log(y(x)) =0,
y(©0)=1  y'(0)=0
where the analytic solution is given as
y(x) = e, x € [0,1]

Table 4: Comparison of Errors (Example 4)

h TDBA HWCM
0.25 2.73x107* -
0.125 2.272 x 107 1.837 x 1073
0.0625 6.692 x 1078 4,701x 10™*
0.03125 1.385 x 10710 1.195 x 107*
0.015625 2.301x 10712 3.010x 1075
0.0078125  3.376x 10713 7.555x 10~°

Bl 04 09

Figure 3: Numerical Result using TDBM (Problem 3.4)

Example 5. Consider the homogeneous singular 1\VP
of the Lane-Emden-type equation, which has been
solved by Shiralashetti et al. (2015) using HWCM,

2
Y'@+oy' ()= Ut +6)yt, ¥ =1,
y'(0) =0, x€[0,1]
where the analytic solution is given as

Exact: y(x) = e*’
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Table 5: Comparison of Errors (Example 5)

N TDBM ROC HWCM

8 9.276 x 1075 3.723 x 107
16 9.240 x 1077 6.65 1.186 x 10™*
32 1390 x 1078 6.05 3.141x 1075
64 1.597 x 10710 6.44 7.907 x 107
128 2.373 x 10712 6.07 1.998 x 10~°

Results and Discussion

Figure 1 depicts the numerical solution trajectory
using TDBA for different values of C at m = 3 for
Example 1. This trajectory showed that it was in
conformity with that of Davis (1962). In Table 1, the
numerical results showed the superiority of the results
obtained using TDBA over those obtained by Hojjati
and Parand (2011) and Horedt (2004). The solution
trajectory for Example 2 is shown in Figure 2. Table 2
shows the comparison of HWCM by Shiralashetti et
al. (2015) and TDBA. It is seen that TDBA is more
accurate with smaller errors at all points considered.

Figure 3 represents the solution trajectory to the exact
solution. It shows a comparison of the TDBA to the
method by Okunuga et al. (2012) for different end
points. It is obvious, from Table 3, that our method is
more accurate since the order is higher than that of
Okunuga et al. (2012). Table 4 summarises the results
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