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Abstract 

Automatic speech keyword recognition is an important subset of general speech recognition. It is especially 

relevant in situations with limited computational resources, such as voice command recognition in low-

power/low-memory device and robot interaction. This paper introduces a method for performing efficient 

Speaker Independent Real Time Command Word Recognition using a hybrid Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) network with only 9.8K trainable parameters. CNN extracts 

short-term spatial features from Mel Frequency Cepstral Coefficients of command words arranged into an 

image-like format. LSTM learns extracted spatial features as long-term dependences. The model is trained 

and evaluated on the Google Speech Commands dataset on which it achieved an accuracy of 83%, a memory 

requirement that is 2-5% of state-of-the-art models and a faster response time when compared to off-the-

shelf models. 

Keywords: Command Word Recognition, Convolutional Neural Network, Long Short-Term Memory, 

Deep Learning, Recurrent Neural Network, Natural Language Processing 

Introduction 

Speech recognition is the process of converting 

human speech into text by a computer and it is the 

intersection of linguistics and computer science. 

Speech recognition systems today are capable of 

recognizing thousands of words independent of any 

particular speaker by using powerful neural networks 

often run in the cloud, this means that while General 

Speech Recognition is extremely versatile, it is 

impractical for applications that require voice input 

typically restricted to a handful of command words 

from users as it is resource-intensive, relatively slow 

and subject to privacy breaches if an always-listening 

system streams audio to a remote device for 

processing (De Andrade et al. 2018). 

This work introduces a hybrid Convolutional Neural 

Network (CNN) and Long Short-Term Memory 

(LSTM) network architecture designed to recognize 

command words in real time and capable of running 

locally on low-end devices. The main contribution of 

this work is the development of a speaker 

independent command word recognition system 

using a hybrid CNN-LSTM model that is trained on 

MFCC of command words. The model achieves an 

accuracy of 83% with extremely low trainable 

parameters of 9.8K (2-5% of state-of-art models) and 

very fast response that is 4 times faster than off-the-

shelf models. The CNN-LSTM meets the 

requirements of being suitable for low-resource 

devices and robots. 

Literature Review 

After many decades of research and development the 

accuracy of speech recognition systems has begun to 

improve considerably with the advent of deep 

learning architectures so that they can now be 

compared to that of humans. Traditionally, speech 

recognition has been confronted with challenges such 

as variations and context in speech, speaker 

independence and noise in the environment. To tackle 
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these challenges researchers in speech recognition 

have focused on understanding various classes of 

speech, speech representation, feature extraction 

techniques, speech classifiers, and performance 

evaluation. 

Based on recent advances in statistical modeling and 

deep learning speech recognition systems have found 

application in human machine interfaces, query-

based information systems, online stock price 

quotations, automated weather report, data entry, 

avionics, speech transcription, commands and 

assistance to the handicap, supermarkets, robotics, 

reservation systems etc. Figure 1 shows the basic 

model of speech recognition systems which can be 

mathematically represented as four components: 

acoustic front end, acoustic, language model and 

search unit (Anusuya and Katti, 2009). 

The traditional approach to continuous speech 

recognition is to assume that speech is a specified 

word sequence 𝑋 that produces an observed acoustics 

sequence 𝑌 with probability 𝑃(𝑋, 𝑌). The goal of 

speech recognition systems is to find the correct 

sequence of words from the acoustic sequence by 

using an acoustic model 𝑃(𝐴|𝑋) that maximizes with 

a posterior probability 𝑃(𝑋|𝐴) that the spoken word 

sequence is the decoded word string. 

𝑃(𝑋|𝐴) = arg 𝑚𝑎𝑥𝑋𝑃(𝑋|𝐴) (1) 

Applying Bayes rule to equation 1, gives 

𝑃(𝑋|𝐴) =
𝑃(𝐴|𝑋)𝑃(𝑋)

𝑃(𝐴)
 

(2) 

Since 𝑃(𝐴) is independent of X, the maximum a 

posterior probability decoding rule in equation 1 is  

𝑋 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑋𝑃(𝐴|𝑋)𝑃(𝑋) (3) 

𝑃(𝑋) in equation 3 is the language model that defines 

the probability associated with a postulated sequence 

of words. 

Acoustic Frontend

Acoustic Models
P(A|X)

Search
Language 
Models

P(X)

Speech

Reconized 
Words  

Figure 1: Continuous Speech Recognition 

System (Anusuya and Katti, 2009) 

Speech is the most crucial and essential method of 

communication among human beings. It is a natural 

and fundamental way of communicating for most 

humans.  The quest to develop frameworks for 

recognition of human speech has long been an 

intriguing issue for the scientific and computing 

world, which has yielded many results. Speech 

recognition, also known as Automatic Speech 

Recognition (ASR), involves automatically 

converting an acoustic or audio waveform into text 

by a computer (IBM Cloud Education, 2020). Over 

the years, various approaches to solving speech 

recognition problems have been explored. One of the 

early algorithms, invented by Soviet researchers in 

1970, the Dynamic Time Warping (DTW) algorithm 

is still a popularly used algorithm for speech 

recognition (Çiçek, 2020). It calculates the optimal 

warping path, which is the shortest distance, between 

two data from sound, and produces an output which 

is the path warping values and the distance between 

the two data. Thus, it is used to find an optimal 

alignment between two given time-dependent 

sequences under certain restrictions. The system 

works in such a way that the smaller the warping path 

that is produced, the greater similarity can be found 

in the two patterns (Permanasari, 2019). DTW has 

been used to compare different speech patterns in 

automatic speech recognition. DTW becomes 

relevant in speech recognition because different 

recordings of the same words may include similar 

sounds in the same order, but the precise durations of 

each sub-word within the word may be incongruent, 

or not match. DTW recognizes words by matching 

them to templates with temporal alignment. 

Hidden Markov Models (HMMs) are black boxes, 

where the sequence of output symbols generated over 

time is observable, but the sequence of states visited 

over time is hidden from the observer. While a regular 

Markov chain model is useful for clearer events, such 

as text inputs, HMMs allow for less obvious events, 

such as mapping part-of-speech tags into 

probabilistic models. Thus, it allows labels to be 

assigned to each unit, i.e., words, syllables, 

sentences, etc., in the sequence. These labels are 

mapped with the provided input, allowing it to 

determine the most appropriate label sequence 

(Trivedi, 2014).  

With the advent of Artificial Neural Networks and 

Long Short-Term Memory Networks which provide 

a powerful way to model sequential data with long 

term dependencies, end to end speech recognition 

became possible (Graves, 2014). Central to this 

advancement is Connectionist Temporal 
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Classification (CTC), which allows Recurrent Neural 

Networks to be trained for sequence transcription 

tasks in which the alignment at each timestep 

between the input and target sequences is unknown 

(Graves, 2014). This made it feasible to calculate the 

loss at every timestep of an LSTM network learning 

speech recognition as CTC provided the alignment 

between the network’s predictions at each timestep 

and the actual word. 

The CTC network will strip the output of the repeated 

characters generated at successive timesteps and be 

decoded i.e., finding the most probable output 

transcription using a beam search algorithm and 

integrating a language model. One such model is the 

Deep Speech end to end speech recognition system 

composed of a 5-layer model and trained using CTC 

loss. In this model a spectrogram frame is passed in 

with left and right context as input with the first 3 

layers were non recurrent with the 4th being a 

bidirectional RNN and the 5th layer also being non 

recurrent but taking inputs from both the forward and 

backward recurrent units, and the output layer is a 

softmax which outputs the probability of a character 

occurring. The model was trained using synthesized 

speech to inject noise into prerecorded labelled clean 

speech in order to simulate real life environments and 

provide robustness to noise and other audio effects 

without need of hand-crafted mechanisms to filter 

noise (Hannun et al., 2014). 

(Abdel-Hamid et al., 2014) used the Mel-Frequency 

Spectral Coefficients (MFSC) to train CNN for 

speech recognition. They demonstrated that over the 

TIMIT phone recognition and voice search 

vocabulary it outperformed systems using Dense 

Neural Networks (DNN) by as much as 6-10%. 

Identification of speech commands, also known as 

keyword spotting, is important from an engineering 

perspective for a wide range of applications, from 

indexing audio databases and indexing keywords 

(Tabibian et al 2013) to running speech models 

locally in microcontrollers (Zhang et al, 2017). 

(Chen et al., 2015) explored keyword spotting using 

a combination of Long Short Term Memory 

Networks and DTW. This approach involved 

generating a fixed length representation from 

variable length audio input and comparing the 

representation against averaged template samples 

using Cosine similarity to determine if a keyword 

was spoken. In this architecture, preprocessing steps 

involved using a voice-activity detection system to 

limit running of the Keyword Spotting System to 

voice regions and log-filter bank energies were 

computed for the voice regions and passed to the 

LSTM directly (Chen et al, 2015). (Gouda et al, 

2018) in an attempt to represent audio samples as 

images and passed them to CNNs for perform 

keyword spotting. This architecture worked by 

converting audio into spectrograms which are two-

dimensional structures suitable for processing by a 

CNN. The CNN explored here consists of two 

convolutional layers and two max pooling layers 

followed by a densely connected layer and a softmax 

output layer. This approach involved listening to the 

whole audio and converting it into a spectrogram 

thereby treating keyword spotting as an image 

recognition problem. 

In recent years, hybrid CNN-LSTM architectures 

have come to the fore with the CNN part of the model 

typically used for local feature extraction and the 

LSTM part for learning long term dependencies. (De 

Andrade et al, 2018) introduced a CNN-LSTM model 

with attention where audio samples were converted 

into spectrograms and passed as input to a 2D CNN 

which performed local feature extraction and passed 

the result to a bidirectional LSTM. Similar to 

previous works using CNNs, this architecture 

required the whole audio sample before prediction. 

(Li and Zhou, 2019) developed three command word 

recognition systems using three machine learning 

algorithms, Vanilla Single-Layer softmax model, 

DNN and CNN using the MFCC features of 

command words. CNN had the best performance 

with an accuracy of 95.1% for six labels. (Waqar, 

2021) developed a MFCC-CNN four speech 

command system with an accuracy of 96.5%. 

(Wubet, 2021) developed three models, CNN, SVM 

and CNN-SVM for keyword recognition and found 

that the CNN-SVM model outperformed the CNN 

and SVM models. The models were training the 

spectrograms of key words. (Yang et al. 2020) trained 

CNN, DNN, and LSTM using MFCC for command 

word recognition and found that CNN outperformed 

the other machine learning algorithms. 

Methodology 

The functional requirement of this work is to develop 

a speaker independent command word recognition 

system (SICWR) for low-resource devices and robots 

capable of recognizing a limited set of command 

words spoken in the English language. The non-

functional requirements of SICWR are that a) the 

trained command word recognition model should be 

less that 5MB; b) the audio preprocessing should take 

less than 50 milliseconds per frame and c) the model 

should be at least 80% accurate. Given the low 

memory budget and response time of SICWR, it was 

decided that a hybrid CNN-LSTM be developed that 
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recognized command words preprocessed into an 

MFCC vector format into 2D MFCC image. MFCCs 

are a more compact representation of speech signals 

than spectrograms. In earlier work (Abdel-Hamid et 

al., 2014) avoided using MFCC to train CNN for 

speech recognition because according to them the 

Discrete Cosine Transform (DCT) that generates 

MFCCs project spectral energies into a new basis that 

may not maintain locality. Instead, they used Mel-

Frequency Spectral Coefficients (MFSC). In this 

work the non-locality of MFCCs is not a drawback it 

is learned by LSTM and used for word classification. 

The rest of this section is outlined in the following 

subsections: a) the SICWR system architecture b) the 

audio preprocessor module c) CNN, d) LSTM, e) the 

CNN-LSTM hybrid model implementation, and f) 

the Labeller. 

 
Figure 2: CNN-LSTM SICWR architecture 

SICWR System Architecture 

The SICWR system architecture is shown in Figure 

2. It starts by taking in a raw audio file as input and 

passes this file to the Audio Preprocessor which will 

perform the MFCC extraction with a frame size of 

25ms, an overlap of 15ms, 512 discrete Fourier 

transform points, and a 26-filter Mel-filterbank. 

Mean normalization was then applied to help 

improve the Signal to Noise Ratio (SNR) of the audio 

signal (Subramanian and Chong, 2019). Figure 3 

shows the visualization of the mean normalized 

MFCC of typical audio signal of a command word. 

 

Figure 3: Mean Normalized MFCCs (Fayek, 

2016) 

After the MFCC feature extraction, only 12 

coefficients (from the 2nd to the 13th) will be kept. 

The coefficients are then stored as one row in the 

input feature matrix and subsequent rows are filled up 

via the same process. The result of this is a matrix 

containing rows of MFCC coefficients stacked on top 

of each other to form an ‘image’ of coefficients over 

a period of 162.5ms. The 12 × 12 matrix is then 

passed as input to the 2D CNN for local feature 

extraction. The 2D CNN consists of a 4 × 4 

convolutional layer and a 2 × 2 max pooling layer 

followed by a 44 × 1 fully connected layer. The 44 ×
1 vector is passed to a single layer unidirectional 

LSTM with a 64 × 1 hidden state size. The LSTM’s 

output is passed to 2 fully connected layers with 

dimensions 32 × 1 and 𝑁𝑐 × 1 where 𝑁𝑐 is the 

number of command words. The network makes use 

of the softmax activation function to convert the 𝑁𝑐 ×
1 vector into a probability distribution of the uttered 

command word. Table 1 summarizes the CNN-

LSTM architecture. Figures 6 and 7 show the 

schematic of the hybrid model architecture and the 

system’s architecture. 

The system architecture consists of an Audio 

preprocessor, the CNN-LSTM SICWR, and a 

Labeller. The function performed by the Audio 

preprocessor and Labeller are what makes the 

SICWR usable. 

Audio Preprocessor 

Raw audio streams are not directly usable by neural 

networks, so some preprocessing will have to be done 

to convert the audio format then clean it up to make 

training the model easier. The audio preprocessor 

handles the key process of converting a raw audio 

stream of input vectors usable by the neural network. 

This class is instantiated with an audio stream as well 

as the values for preprocessing like the frame size, 

frame overlap and windowing function. The output is 

in the form of a matrix representing a collection of 

processed audio frames. The following preprocessing 

steps are implemented by the Audio preprocessor: 
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Framing: Here the audio is split into a sequence of 

overlapping frames. This is important as it is required 

for the Fourier transform of the audio signal. Since 

short-term frequencies of signals are stationary, they 

can be captured effectively this way. 

Windowing: After the audio is sliced into frames, the 

Hamming window function is applied to each frame 

to reduce spectral leakage. 

Short Time Fourier transform: Next, a fast Fourier 

Transform is done on each frame to get the frequency 

spectrum and then compute the power spectrum. 

Mel Frequency Cepstral Coefficients: The sound of 

speech is governed by the shape of the human vocal 

tract which manifests as an envelope of the short time 

power spectrum obtained in the previous step. 

MFCCs give an accurate and compact representation 

of this envelope. 

Mean Normalization: After the input features are 

generated, they are scaled to balance the spectrum 

and SNR 

Grouping: After other preprocessing steps, the 

output vector is stacked in batches of 12 to form the 

MFCC image. 

Convolutional Neural Networks 

Convolutional Neural Networks are a class of ANNs 

that use convolution operations instead of general 

matrix multiplication in at least one of their layers. 

This gives CNN its unique form of sparse matrix and 

shared weight regularization (Bezdan, and Džakula, 

2019; Taye, 2023). On the other hand, Multilayer 

Perceptrons (MLPs) are fully connected networks, 

where each neuron in one layer is connected to all 

neurons in the next layer making these networks 

prone to overfitting data (LeCun, 1989). The 

configuration of one of the early CNNs, “LeNet” 

(LeCun, 1989) is shown in Figure 4 is described to 

explain of operation of CNNs. LeNet has 7 layers 

with trainable parameters or weights. The input is a 

gray scale 32 × 32 pixel image. The main operations 

performed by CNNs are convolution and pooling. 

Layer C1 is a convolution layer with 6 neurons, each 

with inputs from 5 × 5 kernels and output to 28 × 28 

feature maps. C1 has 156 parameters or weights and 

contains 122,304 connections. Convolution 

operations extract high-level features from input data 

by performing a matrix multiplication between a 

filter and its receptive field or kernel, i.e., a restricted 

area of a previous layer typically a square as opposed 

to fully connected layers whose receptive field is the 

whole previous layer.

FC3:Dense
120

FC2:Dense
84S1:Feature maps

6x14x14

C1:Feature maps
6x28x28Input

32x32

C2:Feature maps
16x10x10

S2:Feature maps
16x5x5

FC1:Dense
120

Convolutions Subsampling
Full

Connection
 

Figure 4: LeNet CNN architecture (LeCun, 1989) 
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Starting from the beginning of the input, the filter 

moves to the right with a certain stride until it reaches 

the end of a row and then goes down to the next row 

and repeats this process until the whole input has 

been convolved. Figure 5 gives an exploded view of 

the first convolution and subsampling layers. The 

equation for a convolution operation with a 2D filter 

is given by equations 4, 5, and 6 (Zhang, 2016). 

𝜎(𝑥) =
1

1 + 𝑒𝑥𝑝−𝑥
 

(4) 

𝐶𝑝
1 = 𝜎(𝐼 ∗ 𝑘1,𝑝

1 + 𝑏𝑝
1) (5) 

𝐶𝑝
1(𝑖, 𝑗) = 𝜎 ( ∑ ∑ 𝐼(𝑖 − 𝑢, 𝑗

2

𝑣=−2

2

𝑢=−2

− 𝑣)𝑘1,𝑝
1 (𝑢, 𝑣) + 𝑏𝑝

1) 

(6) 

Equation 4 is the activation function of each neuron 

and equation 5 is a convolution operation (∗ is the 

convolution operator). Equation 6 describes the 

complete convolution over the image 𝐼 with output to 

the feature map 𝐶𝑝
1 at location 𝑖 (row) and 𝑗 (column). 

I

k2 σ 

b2

σ 

b1

k1

5x5

C1

28x28

C2

σ C6

b6

k6

32x32

S1

14x14

Average 
pooling

S2

S6

 

Figure 5: First convolutional layer of LeNet. 

 

 

 

Layer S1 is a subsampling layer with 6 feature maps 

of size 14 × 14 that are each connected to pooling 

unit with 2 × 2 nonoverlapping receptive field on 

feature maps 𝐶𝑝
1. The Pooling operation is used for 

reducing the size of features produced by the 

convolutional layers. This decreases the 

computational power required to process the data via 

dimensionality reduction and extracts dominant 

features which are rotational and positional invariant, 

thus maintaining the process of effectively training 

the model. The two types of pooling are max pooling 

which returns the maximum value in the receptive 

field and average pooling which returns the average 

of all the values in the receptive field. Max pooling 

discards noisy values and so it performs denoising 

along with dimensionality reduction, compared to 

average pooling which averages noise with actual 

data. The equation for average pooling at the first 

subsampling layer is given in (7). 

 

𝑆𝑝
1(𝑖, 𝑗) =

1

4
∑ ∑ 𝐶𝑝

1(2𝑖 − 𝑢, 2𝑗 − 𝑣)

1

𝑣=0

1

𝑢=0

 

(7) 

where 𝑖, 𝑗 = 1, 2, … ,14. Equations 8, 9 and 10 

describe the convolution at layer C2 and average 

pooling at layer S2 respectively. 

𝐶𝑞
2 = 𝜎 (∑ 𝑆𝑝

1 ∗ 𝑘𝑝.𝑞
2

6

𝑝=1

+ 𝑏𝑞
2) 

(8) 

𝐶𝑝
2(𝑖, 𝑗) = 𝜎 (∑ ∑ ∑ 𝑆𝑝

1(𝑖 − 𝑢, 𝑗

2

𝑣=−2

2

𝑢=−2

6

𝑝=1

− 𝑣)𝑘1,𝑝
2 (𝑢, 𝑣) + 𝑏𝑝

2) 

(9) 

𝑆𝑞
2(𝑖, 𝑗) =

1

4
∑ ∑ 𝐶𝑞

2(2𝑖 − 𝑢, 2𝑗 − 𝑣)

1

𝑣=0

1

𝑢=0

 

(10) 

𝑞 = 1, 2, … , 16 and 𝑖, 𝑗 = 1, 2, … ,10. Units in the 

fully connected layers are classical neurons that 

compute the dot product of the input vector with their 

weight vector 𝑊 and add the bias. The weighted sum  
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Figure 6: Network structure of an LSTM cell 

 

is then passed through the sigmoid activation function 

to produce the final output. Neurons at the fully 

connected layer compute the final output using 

equation 11 below: 

𝑦 = 𝜎(𝑊 × 𝑓 + 𝑏) (11) 

where 𝑓 is the flattened vector at the output of the 

second pooling layer, 𝑏 is bias and 𝜎 is the activation 

or sigmoid function. Convolutional neural networks are 

trained by backpropagation. Errors at the output of the 

dense or fully connected layer are backpropagated, a 

process that adjusts the network’s weights to minimize 

the output error or loss. 

Long Short-Term Memory (LSTM) 

LSTM networks are a kind of Recurrent Neural 

Network (RNN) architecture. RNNs are a class of 

artificial neural networks primarily used for processing 

sequential data and derive their recurrent nature by 

using the same set of neuron weights for every data 

point in a sequence while making the output of the 

current input depend on the results of past 

computations. RNNs are trained using backpropagation 

through time which works by unrolling all input 

timesteps and executing the original backpropagation 

algorithm. After unrolling for a number of time steps, 

errors are then calculated and accumulated for each 

timestep. The network is rolled back up and the weights 

are updated with accumulated error using 

backpropagation (Werbos, 1990). In ‘deep’ recurrent 

neural networks i.e., where there are thousands of 

timesteps, thousands of derivatives will be required for 

a single weight update, and this can cause gradients to 

sometimes vanish or explode. This limits the ability of 

an RNN to effectively learn long term dependencies 

leading to short term memory (Hochreiter, 1998). 

LSTMs get around this by making use of internal 

mechanisms called gates to regulate the internal 

memory of the network, namely the input, output and 

forget gates. As part of the training process, LSTMs 

learn what parameters to assign to each gate and so 

learn what parts of data in a sequence are important to 

keep and what parts to discard (Hochreiter, 1997). 

As can be seen from Figure 6 and equations (12) to (17) 

listed below each gate has a unique function as well as 

weights and bias parameters. For every input 𝑥𝑡 

generate a hidden activation ℎ𝑡, the forget gate 𝑓𝑡, an 

update gate 𝑖𝑡, an output gate 𝑜𝑡 and updates the 

memory cell 𝑐𝑡. In the forward-pass of the LSTM, the 

input gate given the previous hidden state and current 

input decides what portion of the state will be updated. 

The forget gate given the same inputs, decides what 

portion of the state should be discarded. Both gates 

produce values between 0 and 1 and so the state is 

updated by multiplying the forget gate’s value with the 

previous state, multiplying the candidate state by the 

input gate’s value and summing the results. Similarly, 

the output gate decides the value of the new hidden 

state given the new cell state. 

𝑓𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (12) 

𝑓𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (13) 

𝑓̃𝑓 = 𝑓𝑓𝑓ℎ(𝑓�̃�ℎℎ𝑓−1 + 𝑓�̃�𝑓𝑓𝑓 + 𝑓�̃�) (14) 

𝑓𝑓 = 𝑓𝑓 ∗ 𝑓𝑓−1 + 𝑓𝑓 ∗ 𝑓̃𝑓 (15) 

𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (16) 

ℎ𝑓 = 𝑓𝑓 ∗ 𝑓𝑓𝑓ℎ (𝑓𝑓) (17) 
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CNN-LSTM Hybrid Model Implementation 

The hybrid CNN LSTM model (see Table 1) was 

implemented using Keras. The MFCC feature 

extraction (Muda et al., 2010) was done using the 

Librosa library (McFee et al, 2015). Inputs to the 

system are raw audio streams converted to stacked 

numpy arrays of Mel Frequency Cepstral Coefficients 

(MFCC). The model is arranged in this way to allow 

CNN to extract local features across a relatively short 

time frame from an ‘image’ of cepstral coefficients. 

The image of cepstral coefficients contains the left and 

right context for every MFCC frame. CNN passes 

extracted short-term features to the unidirectional 

LSTM to learn longer term dependencies and output 

predictions in real time. 

Table 1: Summary of CNN-LSTM model 

Layer Output size Operation 

Convolution 12 × 12 Conv (4 × 4) 

Stride = 1 

Pooling 6 × 6 Maxpool (4 × 4); 

Stride = 2 

Flattening 36 × 1  

Dense 44 × 1 Batch Norm + 

ReLU 

LSTM 64 × 1  

Dense 32 × 1 ReLU 

Softmax (𝑁𝑐 × 1) × 1  

Labeller 

The Labeller serves as the final output layer of the 

SICWR, as it handles the mapping of the networks 

output (in form of a probability distribution).to the 

detected command word’s text, or null value if no 

command word was detected. 

Results and Discussion 

The model was trained on the 12-Command Google 

Speech Commands dataset containing the target speech 

commands as well as negative samples. The dataset 

contains 100,503 samples of 1-second-long audio 

containing either the command word or a negative 

sample along with a label corresponding to the target 

class. The dataset was split into an 85-5-10 train-test-

validation dataset. The model was trained for 11 epochs 

using the Adam optimizer (Kingma, 2014) with a 

learning rate of 0.001. Plots of the model’s accuracy 

and loss with increasing training epochs a shown in 

Figures 7 and 8. 

Table 2: Accuracy results on 12-commands from 

Google Speech Command Dataset 

Model Accuracy 

(%) 

Trainable 

Parameters 

Attention RNN v2 96.9 202 K 

ConvNet on raw WAV 89.4 700 K 

DS-CNN 95.4 498 K 

res 8 94.1 110 K 

res15 95.8 238 K 

res26 95.2 438 K 

CNN-LSTM 83.0 9.8 K 

The performance of the CNN-LSTM model is 

compared with other state-of-the-art models (see Table 

2), e.g., res15, res26, and Attention RNN v2 (De 

Andrade et al., 2018). The results obtained from the 

CNN-LSTM are significantly less accurate than the all 

the models except ConvNet, it meets our benchmark of 

80% with the tradeoff of being around 2-5% the size of 

state-of-the-art models. The runtime performance is 

compared with the two versions of DenseNet-121. The 

DenseNet-121 model A (see Table 3) is without 

pretraining and multiscale. DenseNet-121 model B is 

pretrained on UltraSound8K without multiscale 

(UltraSound8K, 2023).  
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Figure 7: Plot of the CNN-LSTM model accuracy with increasing training epochs. 

 

 

Figure 8: Plot of model’s loss with increasing training epochs 
[

It can be observed that the CNN-LSTM command word 

recognition system outperforms the two DenseNet-121 

models, both in terms of memory requirements and 

prediction delay. There is almost fourfold improvement 

in both average memory and prediction delay over the 

two models of DenseNet-121. 

Table 3: Performance metrics 

 

Model Average 

CPU Usage 

(%) 

Average 

Memory 

Usage (MB) 

Prediction 

Delay (secs) 

DenseNet-

121 A 

40 1500 2 

DenseNet-

121 B 

60 2000 1.8 

CNN-LSTM 20 500 0.5 

Conclusion and Recommendations 

Speech command recognition is an important 

component of HCI systems and models capable of 

running locally with a small footprint while 

maintaining a reasonable accuracy are a crucial 

requirement. In this work, we introduced an CNN-

LSTM architecture that achieves this benchmark. 

The recognition system takes raw WAV files as inputs, 

extracts its features in the form of MFCC, arranges 

them into an image of coefficients and passes them to 

the hybrid CNN-LSTM Model which outputs a 

probability distribution that is converted into the text of 

the spoken word if a command word was detected. 
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The Google Speech Commands dataset was used to 

train and evaluate the effectiveness of our model. The 

model achieved a 83% accuracy while keeping average 

CPU usage at 5%, average memory usage at 50MB and 

an extremely small size of 9.8k trainable parameters. 

This model is therefore well suited to resource 

constrained environments with the tradeoff being lower 

accuracy. 

Future work will involve exploring different recurrent 

architectures with the aim of reducing complexity even 

further. 
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