

Hybrid CNN-LSTM model 115

Journal of Scientific Research and Development (2023) Vol. 22 (1) 115 - 125

A bi-annual journal published by the Faculty of Science, University of Lagos, Nigeria

http://jsrd.unilag.edu.ng/index.php/jsrd

A hybrid CNN-LSTM model for speaker independent command word recognition

Ebun Phillip Fasina*, Babatunde Alade Sawyerr, Chibuzor Nwalor, Ogban Ugot

Department of Computer Sciences, University of Lagos, Akoka. Nigeria

*Corresponding author: efasina@unilag.edu.ng

(Received 02 May 2023/Revised 24 June 2023/Accepted 25 June 2023)

Abstract

Automatic speech keyword recognition is an important subset of general speech recognition. It is especially

relevant in situations with limited computational resources, such as voice command recognition in low-

power/low-memory device and robot interaction. This paper introduces a method for performing efficient

Speaker Independent Real Time Command Word Recognition using a hybrid Convolutional Neural Network

(CNN) and Long Short-Term Memory (LSTM) network with only 9.8K trainable parameters. CNN extracts

short-term spatial features from Mel Frequency Cepstral Coefficients of command words arranged into an

image-like format. LSTM learns extracted spatial features as long-term dependences. The model is trained

and evaluated on the Google Speech Commands dataset on which it achieved an accuracy of 83%, a memory

requirement that is 2-5% of state-of-the-art models and a faster response time when compared to off-the-

shelf models.

Keywords: Command Word Recognition, Convolutional Neural Network, Long Short-Term Memory,

Deep Learning, Recurrent Neural Network, Natural Language Processing

Introduction

Speech recognition is the process of converting

human speech into text by a computer and it is the

intersection of linguistics and computer science.

Speech recognition systems today are capable of

recognizing thousands of words independent of any

particular speaker by using powerful neural networks

often run in the cloud, this means that while General

Speech Recognition is extremely versatile, it is

impractical for applications that require voice input

typically restricted to a handful of command words

from users as it is resource-intensive, relatively slow

and subject to privacy breaches if an always-listening

system streams audio to a remote device for

processing (De Andrade et al. 2018).

This work introduces a hybrid Convolutional Neural

Network (CNN) and Long Short-Term Memory

(LSTM) network architecture designed to recognize

command words in real time and capable of running

locally on low-end devices. The main contribution of

this work is the development of a speaker

independent command word recognition system

using a hybrid CNN-LSTM model that is trained on

MFCC of command words. The model achieves an

accuracy of 83% with extremely low trainable

parameters of 9.8K (2-5% of state-of-art models) and

very fast response that is 4 times faster than off-the-

shelf models. The CNN-LSTM meets the

requirements of being suitable for low-resource

devices and robots.

Literature Review

After many decades of research and development the

accuracy of speech recognition systems has begun to

improve considerably with the advent of deep

learning architectures so that they can now be

compared to that of humans. Traditionally, speech

recognition has been confronted with challenges such

as variations and context in speech, speaker

independence and noise in the environment. To tackle

http://jsrd.unilag.edu.ng/index.php/jsrd
mailto:efasina@unilag.edu.ng

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 116

these challenges researchers in speech recognition

have focused on understanding various classes of

speech, speech representation, feature extraction

techniques, speech classifiers, and performance

evaluation.

Based on recent advances in statistical modeling and

deep learning speech recognition systems have found

application in human machine interfaces, query-

based information systems, online stock price

quotations, automated weather report, data entry,

avionics, speech transcription, commands and

assistance to the handicap, supermarkets, robotics,

reservation systems etc. Figure 1 shows the basic

model of speech recognition systems which can be

mathematically represented as four components:

acoustic front end, acoustic, language model and

search unit (Anusuya and Katti, 2009).

The traditional approach to continuous speech

recognition is to assume that speech is a specified

word sequence 𝑋 that produces an observed acoustics

sequence 𝑌 with probability 𝑃(𝑋, 𝑌). The goal of

speech recognition systems is to find the correct

sequence of words from the acoustic sequence by

using an acoustic model 𝑃(𝐴|𝑋) that maximizes with

a posterior probability 𝑃(𝑋|𝐴) that the spoken word

sequence is the decoded word string.

𝑃(𝑋|𝐴) = arg 𝑚𝑎𝑥𝑋𝑃(𝑋|𝐴) (1)

Applying Bayes rule to equation 1, gives

𝑃(𝑋|𝐴) =
𝑃(𝐴|𝑋)𝑃(𝑋)

𝑃(𝐴)

(2)

Since 𝑃(𝐴) is independent of X, the maximum a

posterior probability decoding rule in equation 1 is

𝑋 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑋𝑃(𝐴|𝑋)𝑃(𝑋) (3)

𝑃(𝑋) in equation 3 is the language model that defines

the probability associated with a postulated sequence

of words.

Acoustic Frontend

Acoustic Models
P(A|X)

Search
Language
Models

P(X)

Speech

Reconized
Words

Figure 1: Continuous Speech Recognition

System (Anusuya and Katti, 2009)

Speech is the most crucial and essential method of

communication among human beings. It is a natural

and fundamental way of communicating for most

humans. The quest to develop frameworks for

recognition of human speech has long been an

intriguing issue for the scientific and computing

world, which has yielded many results. Speech

recognition, also known as Automatic Speech

Recognition (ASR), involves automatically

converting an acoustic or audio waveform into text

by a computer (IBM Cloud Education, 2020). Over

the years, various approaches to solving speech

recognition problems have been explored. One of the

early algorithms, invented by Soviet researchers in

1970, the Dynamic Time Warping (DTW) algorithm

is still a popularly used algorithm for speech

recognition (Çiçek, 2020). It calculates the optimal

warping path, which is the shortest distance, between

two data from sound, and produces an output which

is the path warping values and the distance between

the two data. Thus, it is used to find an optimal

alignment between two given time-dependent

sequences under certain restrictions. The system

works in such a way that the smaller the warping path

that is produced, the greater similarity can be found

in the two patterns (Permanasari, 2019). DTW has

been used to compare different speech patterns in

automatic speech recognition. DTW becomes

relevant in speech recognition because different

recordings of the same words may include similar

sounds in the same order, but the precise durations of

each sub-word within the word may be incongruent,

or not match. DTW recognizes words by matching

them to templates with temporal alignment.

Hidden Markov Models (HMMs) are black boxes,

where the sequence of output symbols generated over

time is observable, but the sequence of states visited

over time is hidden from the observer. While a regular

Markov chain model is useful for clearer events, such

as text inputs, HMMs allow for less obvious events,

such as mapping part-of-speech tags into

probabilistic models. Thus, it allows labels to be

assigned to each unit, i.e., words, syllables,

sentences, etc., in the sequence. These labels are

mapped with the provided input, allowing it to

determine the most appropriate label sequence

(Trivedi, 2014).

With the advent of Artificial Neural Networks and

Long Short-Term Memory Networks which provide

a powerful way to model sequential data with long

term dependencies, end to end speech recognition

became possible (Graves, 2014). Central to this

advancement is Connectionist Temporal

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 117

Classification (CTC), which allows Recurrent Neural

Networks to be trained for sequence transcription

tasks in which the alignment at each timestep

between the input and target sequences is unknown

(Graves, 2014). This made it feasible to calculate the

loss at every timestep of an LSTM network learning

speech recognition as CTC provided the alignment

between the network’s predictions at each timestep

and the actual word.

The CTC network will strip the output of the repeated

characters generated at successive timesteps and be

decoded i.e., finding the most probable output

transcription using a beam search algorithm and

integrating a language model. One such model is the

Deep Speech end to end speech recognition system

composed of a 5-layer model and trained using CTC

loss. In this model a spectrogram frame is passed in

with left and right context as input with the first 3

layers were non recurrent with the 4th being a

bidirectional RNN and the 5th layer also being non

recurrent but taking inputs from both the forward and

backward recurrent units, and the output layer is a

softmax which outputs the probability of a character

occurring. The model was trained using synthesized

speech to inject noise into prerecorded labelled clean

speech in order to simulate real life environments and

provide robustness to noise and other audio effects

without need of hand-crafted mechanisms to filter

noise (Hannun et al., 2014).

(Abdel-Hamid et al., 2014) used the Mel-Frequency

Spectral Coefficients (MFSC) to train CNN for

speech recognition. They demonstrated that over the

TIMIT phone recognition and voice search

vocabulary it outperformed systems using Dense

Neural Networks (DNN) by as much as 6-10%.

Identification of speech commands, also known as

keyword spotting, is important from an engineering

perspective for a wide range of applications, from

indexing audio databases and indexing keywords

(Tabibian et al 2013) to running speech models

locally in microcontrollers (Zhang et al, 2017).

(Chen et al., 2015) explored keyword spotting using

a combination of Long Short Term Memory

Networks and DTW. This approach involved

generating a fixed length representation from

variable length audio input and comparing the

representation against averaged template samples

using Cosine similarity to determine if a keyword

was spoken. In this architecture, preprocessing steps

involved using a voice-activity detection system to

limit running of the Keyword Spotting System to

voice regions and log-filter bank energies were

computed for the voice regions and passed to the

LSTM directly (Chen et al, 2015). (Gouda et al,

2018) in an attempt to represent audio samples as

images and passed them to CNNs for perform

keyword spotting. This architecture worked by

converting audio into spectrograms which are two-

dimensional structures suitable for processing by a

CNN. The CNN explored here consists of two

convolutional layers and two max pooling layers

followed by a densely connected layer and a softmax

output layer. This approach involved listening to the

whole audio and converting it into a spectrogram

thereby treating keyword spotting as an image

recognition problem.

In recent years, hybrid CNN-LSTM architectures

have come to the fore with the CNN part of the model

typically used for local feature extraction and the

LSTM part for learning long term dependencies. (De

Andrade et al, 2018) introduced a CNN-LSTM model

with attention where audio samples were converted

into spectrograms and passed as input to a 2D CNN

which performed local feature extraction and passed

the result to a bidirectional LSTM. Similar to

previous works using CNNs, this architecture

required the whole audio sample before prediction.

(Li and Zhou, 2019) developed three command word

recognition systems using three machine learning

algorithms, Vanilla Single-Layer softmax model,

DNN and CNN using the MFCC features of

command words. CNN had the best performance

with an accuracy of 95.1% for six labels. (Waqar,

2021) developed a MFCC-CNN four speech

command system with an accuracy of 96.5%.

(Wubet, 2021) developed three models, CNN, SVM

and CNN-SVM for keyword recognition and found

that the CNN-SVM model outperformed the CNN

and SVM models. The models were training the

spectrograms of key words. (Yang et al. 2020) trained

CNN, DNN, and LSTM using MFCC for command

word recognition and found that CNN outperformed

the other machine learning algorithms.

Methodology

The functional requirement of this work is to develop

a speaker independent command word recognition

system (SICWR) for low-resource devices and robots

capable of recognizing a limited set of command

words spoken in the English language. The non-

functional requirements of SICWR are that a) the

trained command word recognition model should be

less that 5MB; b) the audio preprocessing should take

less than 50 milliseconds per frame and c) the model

should be at least 80% accurate. Given the low

memory budget and response time of SICWR, it was

decided that a hybrid CNN-LSTM be developed that

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 118

recognized command words preprocessed into an

MFCC vector format into 2D MFCC image. MFCCs

are a more compact representation of speech signals

than spectrograms. In earlier work (Abdel-Hamid et

al., 2014) avoided using MFCC to train CNN for

speech recognition because according to them the

Discrete Cosine Transform (DCT) that generates

MFCCs project spectral energies into a new basis that

may not maintain locality. Instead, they used Mel-

Frequency Spectral Coefficients (MFSC). In this

work the non-locality of MFCCs is not a drawback it

is learned by LSTM and used for word classification.

The rest of this section is outlined in the following

subsections: a) the SICWR system architecture b) the

audio preprocessor module c) CNN, d) LSTM, e) the

CNN-LSTM hybrid model implementation, and f)

the Labeller.

Figure 2: CNN-LSTM SICWR architecture

SICWR System Architecture

The SICWR system architecture is shown in Figure

2. It starts by taking in a raw audio file as input and

passes this file to the Audio Preprocessor which will

perform the MFCC extraction with a frame size of

25ms, an overlap of 15ms, 512 discrete Fourier

transform points, and a 26-filter Mel-filterbank.

Mean normalization was then applied to help

improve the Signal to Noise Ratio (SNR) of the audio

signal (Subramanian and Chong, 2019). Figure 3

shows the visualization of the mean normalized

MFCC of typical audio signal of a command word.

Figure 3: Mean Normalized MFCCs (Fayek,

2016)

After the MFCC feature extraction, only 12

coefficients (from the 2nd to the 13th) will be kept.

The coefficients are then stored as one row in the

input feature matrix and subsequent rows are filled up

via the same process. The result of this is a matrix

containing rows of MFCC coefficients stacked on top

of each other to form an ‘image’ of coefficients over

a period of 162.5ms. The 12 × 12 matrix is then

passed as input to the 2D CNN for local feature

extraction. The 2D CNN consists of a 4 × 4

convolutional layer and a 2 × 2 max pooling layer

followed by a 44 × 1 fully connected layer. The 44 ×
1 vector is passed to a single layer unidirectional

LSTM with a 64 × 1 hidden state size. The LSTM’s

output is passed to 2 fully connected layers with

dimensions 32 × 1 and 𝑁𝑐 × 1 where 𝑁𝑐 is the

number of command words. The network makes use

of the softmax activation function to convert the 𝑁𝑐 ×
1 vector into a probability distribution of the uttered

command word. Table 1 summarizes the CNN-

LSTM architecture. Figures 6 and 7 show the

schematic of the hybrid model architecture and the

system’s architecture.

The system architecture consists of an Audio

preprocessor, the CNN-LSTM SICWR, and a

Labeller. The function performed by the Audio

preprocessor and Labeller are what makes the

SICWR usable.

Audio Preprocessor

Raw audio streams are not directly usable by neural

networks, so some preprocessing will have to be done

to convert the audio format then clean it up to make

training the model easier. The audio preprocessor

handles the key process of converting a raw audio

stream of input vectors usable by the neural network.

This class is instantiated with an audio stream as well

as the values for preprocessing like the frame size,

frame overlap and windowing function. The output is

in the form of a matrix representing a collection of

processed audio frames. The following preprocessing

steps are implemented by the Audio preprocessor:

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 119

Framing: Here the audio is split into a sequence of

overlapping frames. This is important as it is required

for the Fourier transform of the audio signal. Since

short-term frequencies of signals are stationary, they

can be captured effectively this way.

Windowing: After the audio is sliced into frames, the

Hamming window function is applied to each frame

to reduce spectral leakage.

Short Time Fourier transform: Next, a fast Fourier

Transform is done on each frame to get the frequency

spectrum and then compute the power spectrum.

Mel Frequency Cepstral Coefficients: The sound of

speech is governed by the shape of the human vocal

tract which manifests as an envelope of the short time

power spectrum obtained in the previous step.

MFCCs give an accurate and compact representation

of this envelope.

Mean Normalization: After the input features are

generated, they are scaled to balance the spectrum

and SNR

Grouping: After other preprocessing steps, the

output vector is stacked in batches of 12 to form the

MFCC image.

Convolutional Neural Networks

Convolutional Neural Networks are a class of ANNs

that use convolution operations instead of general

matrix multiplication in at least one of their layers.

This gives CNN its unique form of sparse matrix and

shared weight regularization (Bezdan, and Džakula,

2019; Taye, 2023). On the other hand, Multilayer

Perceptrons (MLPs) are fully connected networks,

where each neuron in one layer is connected to all

neurons in the next layer making these networks

prone to overfitting data (LeCun, 1989). The

configuration of one of the early CNNs, “LeNet”

(LeCun, 1989) is shown in Figure 4 is described to

explain of operation of CNNs. LeNet has 7 layers

with trainable parameters or weights. The input is a

gray scale 32 × 32 pixel image. The main operations

performed by CNNs are convolution and pooling.

Layer C1 is a convolution layer with 6 neurons, each

with inputs from 5 × 5 kernels and output to 28 × 28

feature maps. C1 has 156 parameters or weights and

contains 122,304 connections. Convolution

operations extract high-level features from input data

by performing a matrix multiplication between a

filter and its receptive field or kernel, i.e., a restricted

area of a previous layer typically a square as opposed

to fully connected layers whose receptive field is the

whole previous layer.

FC3:Dense
120

FC2:Dense
84S1:Feature maps

6x14x14

C1:Feature maps
6x28x28Input

32x32

C2:Feature maps
16x10x10

S2:Feature maps
16x5x5

FC1:Dense
120

Convolutions Subsampling
Full

Connection

Figure 4: LeNet CNN architecture (LeCun, 1989)

Hybrid CNN-LSTM model 120

Starting from the beginning of the input, the filter

moves to the right with a certain stride until it reaches

the end of a row and then goes down to the next row

and repeats this process until the whole input has

been convolved. Figure 5 gives an exploded view of

the first convolution and subsampling layers. The

equation for a convolution operation with a 2D filter

is given by equations 4, 5, and 6 (Zhang, 2016).

𝜎(𝑥) =
1

1 + 𝑒𝑥𝑝−𝑥

(4)

𝐶𝑝
1 = 𝜎(𝐼 ∗ 𝑘1,𝑝

1 + 𝑏𝑝
1) (5)

𝐶𝑝
1(𝑖, 𝑗) = 𝜎 (∑ ∑ 𝐼(𝑖 − 𝑢, 𝑗

2

𝑣=−2

2

𝑢=−2

− 𝑣)𝑘1,𝑝
1 (𝑢, 𝑣) + 𝑏𝑝

1)

(6)

Equation 4 is the activation function of each neuron

and equation 5 is a convolution operation (∗ is the

convolution operator). Equation 6 describes the

complete convolution over the image 𝐼 with output to

the feature map 𝐶𝑝
1 at location 𝑖 (row) and 𝑗 (column).

I

k2 σ

b2

σ

b1

k1

5x5

C1

28x28

C2

σ C6

b6

k6

32x32

S1

14x14

Average
pooling

S2

S6

Figure 5: First convolutional layer of LeNet.

Layer S1 is a subsampling layer with 6 feature maps

of size 14 × 14 that are each connected to pooling

unit with 2 × 2 nonoverlapping receptive field on

feature maps 𝐶𝑝
1. The Pooling operation is used for

reducing the size of features produced by the

convolutional layers. This decreases the

computational power required to process the data via

dimensionality reduction and extracts dominant

features which are rotational and positional invariant,

thus maintaining the process of effectively training

the model. The two types of pooling are max pooling

which returns the maximum value in the receptive

field and average pooling which returns the average

of all the values in the receptive field. Max pooling

discards noisy values and so it performs denoising

along with dimensionality reduction, compared to

average pooling which averages noise with actual

data. The equation for average pooling at the first

subsampling layer is given in (7).

𝑆𝑝
1(𝑖, 𝑗) =

1

4
∑ ∑ 𝐶𝑝

1(2𝑖 − 𝑢, 2𝑗 − 𝑣)

1

𝑣=0

1

𝑢=0

(7)

where 𝑖, 𝑗 = 1, 2, … ,14. Equations 8, 9 and 10

describe the convolution at layer C2 and average

pooling at layer S2 respectively.

𝐶𝑞
2 = 𝜎 (∑ 𝑆𝑝

1 ∗ 𝑘𝑝.𝑞
2

6

𝑝=1

+ 𝑏𝑞
2)

(8)

𝐶𝑝
2(𝑖, 𝑗) = 𝜎 (∑ ∑ ∑ 𝑆𝑝

1(𝑖 − 𝑢, 𝑗

2

𝑣=−2

2

𝑢=−2

6

𝑝=1

− 𝑣)𝑘1,𝑝
2 (𝑢, 𝑣) + 𝑏𝑝

2)

(9)

𝑆𝑞
2(𝑖, 𝑗) =

1

4
∑ ∑ 𝐶𝑞

2(2𝑖 − 𝑢, 2𝑗 − 𝑣)

1

𝑣=0

1

𝑢=0

(10)

𝑞 = 1, 2, … , 16 and 𝑖, 𝑗 = 1, 2, … ,10. Units in the

fully connected layers are classical neurons that

compute the dot product of the input vector with their

weight vector 𝑊 and add the bias. The weighted sum

Hybrid CNN-LSTM model 121

otctitft

σtanhσσ

tanh

ht-1

ct-1 ct

ht

xt

Figure 6: Network structure of an LSTM cell

is then passed through the sigmoid activation function

to produce the final output. Neurons at the fully

connected layer compute the final output using

equation 11 below:

𝑦 = 𝜎(𝑊 × 𝑓 + 𝑏) (11)

where 𝑓 is the flattened vector at the output of the

second pooling layer, 𝑏 is bias and 𝜎 is the activation

or sigmoid function. Convolutional neural networks are

trained by backpropagation. Errors at the output of the

dense or fully connected layer are backpropagated, a

process that adjusts the network’s weights to minimize

the output error or loss.

Long Short-Term Memory (LSTM)

LSTM networks are a kind of Recurrent Neural

Network (RNN) architecture. RNNs are a class of

artificial neural networks primarily used for processing

sequential data and derive their recurrent nature by

using the same set of neuron weights for every data

point in a sequence while making the output of the

current input depend on the results of past

computations. RNNs are trained using backpropagation

through time which works by unrolling all input

timesteps and executing the original backpropagation

algorithm. After unrolling for a number of time steps,

errors are then calculated and accumulated for each

timestep. The network is rolled back up and the weights

are updated with accumulated error using

backpropagation (Werbos, 1990). In ‘deep’ recurrent

neural networks i.e., where there are thousands of

timesteps, thousands of derivatives will be required for

a single weight update, and this can cause gradients to

sometimes vanish or explode. This limits the ability of

an RNN to effectively learn long term dependencies

leading to short term memory (Hochreiter, 1998).

LSTMs get around this by making use of internal

mechanisms called gates to regulate the internal

memory of the network, namely the input, output and

forget gates. As part of the training process, LSTMs

learn what parameters to assign to each gate and so

learn what parts of data in a sequence are important to

keep and what parts to discard (Hochreiter, 1997).

As can be seen from Figure 6 and equations (12) to (17)

listed below each gate has a unique function as well as

weights and bias parameters. For every input 𝑥𝑡

generate a hidden activation ℎ𝑡, the forget gate 𝑓𝑡, an

update gate 𝑖𝑡, an output gate 𝑜𝑡 and updates the

memory cell 𝑐𝑡. In the forward-pass of the LSTM, the

input gate given the previous hidden state and current

input decides what portion of the state will be updated.

The forget gate given the same inputs, decides what

portion of the state should be discarded. Both gates

produce values between 0 and 1 and so the state is

updated by multiplying the forget gate’s value with the

previous state, multiplying the candidate state by the

input gate’s value and summing the results. Similarly,

the output gate decides the value of the new hidden

state given the new cell state.

𝑓𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (12)

𝑓𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (13)

𝑓̃𝑓 = 𝑓𝑓𝑓ℎ(𝑓�̃�ℎℎ𝑓−1 + 𝑓�̃�𝑓𝑓𝑓 + 𝑓�̃�) (14)

𝑓𝑓 = 𝑓𝑓 ∗ 𝑓𝑓−1 + 𝑓𝑓 ∗ 𝑓̃𝑓 (15)

𝑓 = 𝑓(𝑓𝑓ℎℎ𝑓−1 + 𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓) (16)

ℎ𝑓 = 𝑓𝑓 ∗ 𝑓𝑓𝑓ℎ (𝑓𝑓) (17)

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 122

CNN-LSTM Hybrid Model Implementation

The hybrid CNN LSTM model (see Table 1) was

implemented using Keras. The MFCC feature

extraction (Muda et al., 2010) was done using the

Librosa library (McFee et al, 2015). Inputs to the

system are raw audio streams converted to stacked

numpy arrays of Mel Frequency Cepstral Coefficients

(MFCC). The model is arranged in this way to allow

CNN to extract local features across a relatively short

time frame from an ‘image’ of cepstral coefficients.

The image of cepstral coefficients contains the left and

right context for every MFCC frame. CNN passes

extracted short-term features to the unidirectional

LSTM to learn longer term dependencies and output

predictions in real time.

Table 1: Summary of CNN-LSTM model

Layer Output size Operation

Convolution 12 × 12 Conv (4 × 4)

Stride = 1

Pooling 6 × 6 Maxpool (4 × 4);

Stride = 2

Flattening 36 × 1

Dense 44 × 1 Batch Norm +

ReLU

LSTM 64 × 1

Dense 32 × 1 ReLU

Softmax (𝑁𝑐 × 1) × 1

Labeller

The Labeller serves as the final output layer of the

SICWR, as it handles the mapping of the networks

output (in form of a probability distribution).to the

detected command word’s text, or null value if no

command word was detected.

Results and Discussion

The model was trained on the 12-Command Google

Speech Commands dataset containing the target speech

commands as well as negative samples. The dataset

contains 100,503 samples of 1-second-long audio

containing either the command word or a negative

sample along with a label corresponding to the target

class. The dataset was split into an 85-5-10 train-test-

validation dataset. The model was trained for 11 epochs

using the Adam optimizer (Kingma, 2014) with a

learning rate of 0.001. Plots of the model’s accuracy

and loss with increasing training epochs a shown in

Figures 7 and 8.

Table 2: Accuracy results on 12-commands from

Google Speech Command Dataset

Model Accuracy

(%)

Trainable

Parameters

Attention RNN v2 96.9 202 K

ConvNet on raw WAV 89.4 700 K

DS-CNN 95.4 498 K

res 8 94.1 110 K

res15 95.8 238 K

res26 95.2 438 K

CNN-LSTM 83.0 9.8 K

The performance of the CNN-LSTM model is

compared with other state-of-the-art models (see Table

2), e.g., res15, res26, and Attention RNN v2 (De

Andrade et al., 2018). The results obtained from the

CNN-LSTM are significantly less accurate than the all

the models except ConvNet, it meets our benchmark of

80% with the tradeoff of being around 2-5% the size of

state-of-the-art models. The runtime performance is

compared with the two versions of DenseNet-121. The

DenseNet-121 model A (see Table 3) is without

pretraining and multiscale. DenseNet-121 model B is

pretrained on UltraSound8K without multiscale

(UltraSound8K, 2023).

Hybrid CNN-LSTM model 123

Figure 7: Plot of the CNN-LSTM model accuracy with increasing training epochs.

Figure 8: Plot of model’s loss with increasing training epochs
[

It can be observed that the CNN-LSTM command word

recognition system outperforms the two DenseNet-121

models, both in terms of memory requirements and

prediction delay. There is almost fourfold improvement

in both average memory and prediction delay over the

two models of DenseNet-121.

Table 3: Performance metrics

Model Average

CPU Usage

(%)

Average

Memory

Usage (MB)

Prediction

Delay (secs)

DenseNet-

121 A

40 1500 2

DenseNet-

121 B

60 2000 1.8

CNN-LSTM 20 500 0.5

Conclusion and Recommendations

Speech command recognition is an important

component of HCI systems and models capable of

running locally with a small footprint while

maintaining a reasonable accuracy are a crucial

requirement. In this work, we introduced an CNN-

LSTM architecture that achieves this benchmark.

The recognition system takes raw WAV files as inputs,

extracts its features in the form of MFCC, arranges

them into an image of coefficients and passes them to

the hybrid CNN-LSTM Model which outputs a

probability distribution that is converted into the text of

the spoken word if a command word was detected.

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 124

The Google Speech Commands dataset was used to

train and evaluate the effectiveness of our model. The

model achieved a 83% accuracy while keeping average

CPU usage at 5%, average memory usage at 50MB and

an extremely small size of 9.8k trainable parameters.

This model is therefore well suited to resource

constrained environments with the tradeoff being lower

accuracy.

Future work will involve exploring different recurrent

architectures with the aim of reducing complexity even

further.

References

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng,

L., Penn, G., & Yu, D. (2014). Convolutional

Neural Networks for Speech Recognition.

IEEE/ACM Transactions on Audio, Speech, And

Language Processing, 22(10), 1533-1545.

Anusuya, M. A., & Katti, S. K. (2010). Speech Recognition

by Machine, A Review. arXiv preprint

arXiv:1001.2267.

Bezdan, T., & Džakula, N. B. (2019, January). Convolutional

neural network layers and architectures. In Data

Science and Digital Broadcasting Systems,

International Scientific Conference On Information

Technology And Data Related Research, (Vol. 10).

Chen, G., Parada, C., & Sainath, T. N. (2015). Query-By-

Example Keyword Spotting using Long Short-Term

Memory Networks. In IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP)

(pp. 5236-5240). IEEE.

Çiçek, B.G. (2020, July) How to do Speech Recognition with

a Dynamic Time Warping Algorithm: Understanding a

dynamic time warping algorithm,

https://betterprogramming.pub/how-to-do-speech-

recognition-with-a-dynamic-time-warping-algorithm-

159c2a1bb83c

De Andrade, D. C., Leo, S., Viana, M. L. D. S., and

Bernkopf, C. (2018). A Neural Attention Model for

Speech Command Recognition. arXiv preprint

arXiv:1808.08929.

Fayek, H. (2016) Speech Processing for Machine Learning:

Filter banks, Mel-Frequency Cepstral Coefficients

(MFCCs) and What’s In-Between

https://haythamfayek.com/2016/04/21/speech-

processing-for-machine-learning.html

Gouda, S. K., Kanetkar, S., Harrison, D., and Warmuth, M.

K. (2018). Speech Recognition: Keyword Spotting

Through Image Recognition. arXiv preprint

arXiv:1803.03759.

Graves, A., and Jaitly, N. (2014, June). Towards End-to-End

Speech Recognition with Recurrent Neural Networks.

In International Conference on Machine Learning (pp.

1764-1772). PMLR.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,

Elsen, E., Prenger, R., Satheesh, S., Sengupta, S.,

Coates, A., and Ng, A. Y. (2014) Deep Speech: Scaling

Up End-To-End Speech Recognition. arXiv preprint

arXiv:1412.5567, 12.

Hochreiter, S. (1998). The Vanishing Gradient Problem

During Learning Recurrent Neural Nets and Problem

Solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 6(02), 107-

116.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term

memory. Neural computation, 9(8), 1735-1780.

https://www.ibm.com/cloud/learn/speech-recognition

IBM Cloud Education (2020, September) What is Speech

Recognition?

Li, X., and Zhou, Z. (2019). Speech Command Recognition

with Convolutional Neural Network. Stanford CS 229

Projects. [Online]. Available:

http://cs229.stanford.edu/proj2017/final-

reports/5244201.pdf

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M.,

Battenberg, E., and Nieto, O. (2015, July). Librosa:

Audio and Music Signal Analysis in Python. In

Proceedings of the 14th python in science conference

(Vol. 8, pp. 18-25).

Muda, L., Begam, M., and Elamvazuthi, I. (2010). Voice

Recognition Algorithms using Mel Frequency Cepstral

Coefficient (MFCC) and Dynamic Time Warping

(DTW) Techniques. arXiv preprint arXiv:1003.4083.

Permanasari, Y., Harahap, E. H., and Ali, E. P. (2019,

November). Speech recognition using dynamic time

warping (DTW). In Journal of Physics: Conference

Series. vol. 1366, no. 1, p. 012091. IOP Publishing.

Subramanian, A. K., and Chong, N. Y. (2019, August). Mean

Spectral Normalization of Deep Neural Networks For

Embedded Automation. In IEEE 15th International

Conference on Automation Science and Engineering

(CASE) (pp. 249-256). IEEE.

Tabibian, S., Akbari, A., and Nasersharif, B. (2013).

Keyword spotting using an evolutionary-based

classifier and discriminative features. Engineering

Applications of Artificial Intelligence, 26(7), 1660-

1670.

https://betterprogramming.pub/how-to-do-speech-recognition-with-a-dynamic-time-warping-algorithm-159c2a1bb83c
https://betterprogramming.pub/how-to-do-speech-recognition-with-a-dynamic-time-warping-algorithm-159c2a1bb83c
https://betterprogramming.pub/how-to-do-speech-recognition-with-a-dynamic-time-warping-algorithm-159c2a1bb83c
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://www.ibm.com/cloud/learn/speech-recognition
http://cs229.stanford.edu/proj2017/final-reports/5244201.pdf
http://cs229.stanford.edu/proj2017/final-reports/5244201.pdf

Fasina et al., J. Sci. Res. Dev. (2023)

Hybrid CNN-LSTM model 125

Taye, M. M. (2023). Theoretical Understanding of

Convolutional Neural Network: Concepts,

Architectures, Applications, Future Directions.

Computation, 11(3), 52.

Trivedi, P. A. (2014). Introduction To Various Algorithms of

Speech Recognition: Hidden Markov Model, Dynamic

Time Warping and Artificial Neural Networks.

International Journal of Engineering Development and

Research, 2(4), 3590-3596.

UltraSound8K (2023) UltraSound8K Dataset.

https://urbansounddataset.weebly.com/urbansound8k.h

tml

Waqar, D. M., Gunawan, T. S., Kartiwi, M., & Ahmad, R.

(2021). Real-Time Voice-Controlled Game Interaction

using Convolutional Neural Networks. In IEEE 7th

International Conference on Smart Instrumentation,

Measurement and Applications (ICSIMA) (pp. 76-81).

IEEE.

Werbos, P. J. (1990). Backpropagation through Time: What

It Does and How to Do It. Proceedings of the IEEE,

78(10), 1550-1560.

Wubet, Y. A., & Lian, K. Y. (2021). A Hybrid Model Of

CNN-SVM For Speakers’ Gender and Accent

Recognition Using English Keywords. In IEEE

International Conference on Consumer Electronics-

Taiwan (ICCE-TW) (pp. 1-2). IEEE.

Yang, X., Yu, H., & Jia, L. (2020). Speech Recognition of

Command Words Based on Convolutional Neural

Network. In International Conference on Computer

Information and Big Data Applications (CIBDA) (pp.

465-469). IEEE.

Zhang, Y., Suda, N., Lai, L., and Chandra, V. (2017). Hello

Edge: Keyword Spotting on Microcontrollers. arXiv

preprint arXiv:1711.07128.

Zhang, Z. (2016). Derivation Of Backpropagation in

Convolutional Neural Network (CNN). University of

Tennessee, Knoxville, TN, 22, 23.

https://urbansounddataset.weebly.com/urbansound8k.html
https://urbansounddataset.weebly.com/urbansound8k.html

