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Abstract 

This paper deals with an explicit finite difference solution for the one- and two-dimensional consolidation of a 

homogeneous clay layer. The finite difference method approximates the solution of a continuous problem by 

representing it in terms of a discrete set of elements such that there is an integer number of points in depth and 

an integer number of times at which we calculate the field variables; in this case, just the excess pore water 

pressure. The calculation of the average degree of consolidation is used as a medium for comparison between 

the numerical analysis and the empirical analysis. Here, we have solved two-dimensional consolidation 

equations numerically by using Alternating Direction Implicit (ADI) Method. Moreover, tridiagonal methods 

are used here alongside the ADI method. The main idea behind this technique is to avoid the complexities which 

usually occur while solving higher order partial differential equations. Finally, numerical examples are 

presented to show the relationship between the Pore Water Pressure (PWP) and Depth Time Grids (DTG). It 

was also discovered that the Average Degree of Consolidation (Uave) directly varies with respect to the Time 

factor (Tv) as the time step increases.  
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Introduction 

Consolidation is a process by which soils gain 

effective stress, through a dissipation of excess pore 

water pressure, and decrease in volume. However, 

sedimentation is the prior stage of the settlement of 

soils, where effective stress does not exist. These two 

phenomena are the fundamentals for the proper 

understanding of the sedimentation and consolidation 

processes in the containment. In fact, the void ratio, 

due to that effective stress, is controlled by the initial 

void ratio of the tailings (Bartholomeeusen, 2003; 

Been, 1980; Imai, 1981; Sills, 1998).  

 

Many researchers have studied and explained the 

sedimentation process (Coe and Clevenger, 1916; 

Fitch, 1966; Kynch, 1952; Tan et al., 1988) and have 

also applied consolidation theory to soil sedimentation 

(Been and Sills, 1981; McRoberts and Nixon, 1976). 

Been (1980) found that slowed sedimentation could 

be derived from the consolidation theory by setting 

the effective stress to zero. Later, Schiffman (1982) 

stated that self-weight was a key component for 

consolidation while Mikasa and Takada (1984) 

demonstrated that the process commenced after 

sedimentation.  

 

In general, large strain consolidation is associated 

with the process of sedimentation, when it is subjected 

to deposits below water (Koppula and Morgenstern, 

1982). However, the sedimentation is rapid due to 

sub-aerial deposition and not taken into account 

explicitly in the model (Seneviratne et al., 1996). 

Therefore, the end of sedimentation and the starting of 

consolidation are usually chosen arbitrarily. 

 

The theory was based on the assumptions of 

incompressible soil properties i.e., small strain, 

constant hydraulic conductivity and negligible self-

weight (Terzaghi, 1943), which are not applicable for 

soft materials like tailings. The compressibility and 

hydraulic conductivity of tailings are highly non-

linear. As a result, significant changes occur in 

settlement when it is subjected to a stress increment 

by continuous deposition and cannot be considered as 

a small strain problem. Later, it was found that 

incompressible soil properties were inappropriate 

(Davis and Raymond, 1965; Liu and Znidarčić, 1991) 

and that hydraulic conductivity had significant effects 

on changes to the void ratio. Additionally, self-weight 

is an important factor to distinguish between the 

sedimentation and consolidation phenomena of soft 

soils (Schiffman, 1982). 

 

The two-dimensional consolidation theory with sand 

drains was proposed by Carillo (1942) and Barron 

(1948). A few decades later, Somogyi et al. (1984) 

derived a quasi two-dimensional finite strain 

consolidation model parallel to the one-dimensional 

derivation presented by Koppula (1970) providing an 

accurate estimation of the full-scale behaviour. Huerta 

and Rodriguez (1992) also presented a pseudo two-
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dimensional extension of the one-dimensional finite 

strain consolidation theory using the extended model 

to simulate the influence of the vertical drains. Bürger 

et al. (2004) described a two-dimensional analysis of 

sedimentation and consolidation in various shapes of a 

thickener, primarily used for dewatering of slurries, 

assuming the volumetric solids concentration was 

constant across each horizontal cross section. The 

simulation yielded a faster growth of sediment for the 

cone-shaped compared to the cylindrical-shaped 

containment. However, this approach differed from 

those of Somogyi et al. (1984) and Huerta and 

Rodriguez (1992) as the method did not consider the 

horizontal pore water flow. This process continues 

until the excess pore water pressure set up by an 

increase in total stress is completely dissipated (Craig, 

2007). However, due to the low permeability of the 

soil, there will be a time lag between the application 

of the load and the extrusion of the pore water, and 

thus the settlement (Das, 2008). Consolidation is 

important in impervious soils, i.e., soils with low 

permeability, such as clay, whereas in sand, the 

dissipation of excess pore pressure is fast due to high 

permeability. 

 

 

Figure 1: Example of a Clay layer drained on two faces 

(modified by Magnan, J. P., 1988) 
 

Methods 

Analytical Derivation and Solution of Two-

Dimensional (2-D) Consolidation 

The general equation of 2-D consolidation is: 
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where   = excess pore water pressure,    = 

coefficient of consolidation in horizontal direction,    
= coefficient of consolidation in vertical direction, x = 

horizontal coordinate, z = vertical coordinate, and t = 

time (Craig, 2007).  

Using integration by parts on both sides of equation 

(2) and employing variable separable approach yields 
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Since the method used is half range of the sine Fourier 

transform based on the frequency (sinusoidal) of the 

interstitial pressure, the development into Fourier 

series will not affect the coefficient   .  

Therefore,                            

Now, we have  
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Boundary and Initial Conditions for Two-

Dimensional (2-D) Consolidation Equation                                                                
The boundary conditions are not as fully prescribed in 

certain types of two-dimensional consolidation as in 

one-dimensional problems. It will be noticed that the 

boundary to the left and right in the compressible 

layer are not sharply defined in Figure 1. The 

termination of the calculation in these directions will 

be a consideration, which depends on the nature of the 

problem, the precision required and the judgment of 

the computer. However, it will generally be a simple 

matter to choose the number of significant figures 

desired and to terminate the calculations where values 

of less than half the last significant figure are 

encountered.  

 

In certain cases, care must be taken, as the values will 

tend to spread outwards. This will occur where one of 

the boundary layers is impervious so that free 

drainage through its surface is prevented. Thus, the 

dissipation of hydrostatic excess pressure in the high-

pressure regions can only be accomplished by the 

raising of pressure in the low-pressure regions by the 

flow of the pore water. This will result in swelling in 

those regions into which the water is flowing. If the 

coefficient of  swelling  is  assumed to be equal to  the     

 

By applying sine Fourier transforms on equation (1), we have equation (2): 
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coefficient of consolidation, no extra labour is 

involved in the calculations but where a different 

value is assumed, or obtained from tests, the 

computation will be altered in regions where swelling 

is taking place as demonstrated in one of the previous 

works by R. F. Craig (2007). 

 

Making the assumption that the soil is homogeneous 

and un-stratified,       .  
Then equation (8) becomes 
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If we apply the conditions above, i.e.,   (   )   , 

  (    )   , and t = 0 into equation (8): 
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If we make identification of k =   , n = 1, 2, 3 ….. 

Then,  

  (   )  ∑    [  (
  

  
)
 

   ]    (
   

  
)

 

   

              

∑(
 

 
∫  ( )
  

 

   (
   

  
)  )    [  (

  

  
)
 

   ]    (
   

  
)

 

   

 

Where  ( )       

∑ (
 

 
∫    
  

 
   (

   

  
)  )    [  (

  

  
)
 

   ]    (
   

  
) 

    

               (11)                                                                  

Then, we simplified    
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When n is even,     , and when n is odd,    will be 

valid 
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Putting equation (13) into (11) produces 
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Let n = 2m + 1 where m = 0 
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Equation (15) is the analytical solution to the problem. 

 

Results and Discussion 

Numerical Solution of 2-D Consolidation using 

Alternating Direction Implicit (ADI) Method  

In Mathematics, the Alternating Direction Implicit 

(ADI) Method is a finite difference method for 

solving parabolic and elliptic partial differential 

equations. It is most notably used to solve the problem 

of heat conduction or for solving the diffusion 

equations in two or more dimensions. The traditional 

method for solving the heat conduction equation is the 

Crank-Nicolson method. But the problem with Crank-

Nicolson method is that the solution at each step of 

method is slower and a large memory scale is required 

to store the elements of the matrix. The advantage of 

ADI method is that the equations that have to be 

solved in every iteration have simpler structures and 

are thus easier to solve. 

  

Applying ADI on equation (1), we obtain 

    
        

 

  
   *

      
         

         
 

   
+

   *
      
         

          
 

   
+ 

    
        

    *  [
      
            

             
 

   
]  

                                             [
      
            

             
 

   
]+       (16)                                   

Assuming that the soil is homogeneous and 

unstratified;      , and for convenience,    can be 

taken to be equal to   . 

Then 
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Let 
    

   
   then equation (17) becomes  
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Equation (18) is the required numerical expression for 

2-D consolidation theory. 

 

In the ADI method the formula of equation (18) can 

be rearranged again by the following two ways: 
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Equation (19) is used to compute function values at all 

interval mesh points along columns while equation 

(20) is used to compute function values at all interval 

mesh points along rows. Note that for i = 1, 2, 3,..., n-

1, equation (19) yields a tridiagonal system of 

equations and can be easily solved. Similarly, for j = 

1, 2, 3, ..., n-1, equation (20) also yields a tridiagonal 

system of equations. In the ADI method equations 

(19) and (20) are used alternately. For example, for 

the first column, if i = 1, equation (19) gives: 
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In order to apply the finite difference techniques in 

this research work, the problem treated by R. F. Craig 

(2007) is discussed and analysed as follows: 
 

A half-closed clay layer (free-drainage at the upper 

boundary) is 10 m thick and the value of Cv is 7.9 

m
2
/year. The initial distribution of excess pore water 

pressure is as shown in Table 1. 

 
Table 1: Initial Excess Pore-Water Pressure Distribution  
 

Depth (m) 0 2 4 6 8 10 

Pressure (kN/m
2
) 60 54 41 29 19 15 

*Source: Craig, R. F. (2007) 
 

First time level when j = 0 

         (                  )  (    )     

At      ,        (              )  (    )     

         (         )         
    (    )               

At      ,          (          )          

   (     )               

At      ,          (         )          

   (     )               

At      ,          (         )          

   (     )               

At      ,          (         )          

   (     )               

 

Second time level when j = 1 

         (                  )  (    )     

At      ,        (              )          

         (         )         
    (      )          
       

At      ,          (          )          

   (         )                 

At      ,          (         )          

   (         )                 

At      ,          (         )          

   (         )                 

At      ,          (         )          

   (         )                 
 
Table 2: Pore-Water Pressure and Depth Time Grids  
 

Third time level when j = 2 

         (                  )  (    )     

At      ,          (         )          

   (       )                  

At      ,          (          )          

   (           )                  

At      ,          (         )          

   (           )                  

At      ,          (         )          

   (           )                  

At      ,          (         )          

   (           )                  
 

Fourth time level when j = 3 

         (                  )  (    )     

At      ,          (         )          

   (       )                  

At      ,          (          )          

   (           )                  

At      ,          (         )          

   (           )                  

At      ,          (         )          

   (           )                  

At      ,          (         )          

   (           )                  

 

Therefore, the results of the excess pore-water 

pressure distribution are presented in Table 2 for 

eleven of the twenty time steps. 

 

Average Degree of Consolidation 

To calculate the average degree of consolidation at the 

end of each time step, the enumerical integration of 

the equation is required (Craig, 2007): 
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For the purpose of this research work, the Simpson 

one-third rule was adopted. Thus, the area under the 

curve of consideration is divided into n-number 

(where n is an even number), which ranges from x = a 

to x  =  b. Therefore,  the  area  can be found using the   

                                                                                                                                                                                                 

                                                                            

 j 0.00 0.05 0.01 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

  0 0 0 0 0 0 0 0 0 0 0   0 

i 1 54.00 47.30 41.95 34.05 28.57   24.58   21.57 19.23 17.35 15.82 14.56 13.50 

 2 41.00 41.10 40.53 38.37 35.74   33.13   30.73 28.58 26.69 25.03 23.58 22.31 

 3 29.00 29.20 29.43 29.72 29.68   29.35   28.82 28.17 27.47 26.75 26.03 25.34 

 4 19.00 19.60 20.18 21.28 22.28   23.11   23.78 24.29 24.65 24.87 24.98 25.00 

 5 15.00 15.80 16.56 17.98 19.27   20.44   21.47 22.36 23.09 23.68 24.12 24.43 

Time (days)   0.00 18.25 36.50 73.00 109.50 146.0 182.50 219.00 255.50 292.00 328.50 365 
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expression: 
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At 20th term level  
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 (           )] = 182.93kN/m                         (24) 

 
Table 3: Average Degree of Consolidation at all the 

twenty steps 

Time step Time 

 

Time factor   Average Degree 

of Consolidation  

 t (years) 
   

   

  
 

    ( ) 

1 0.05 0.00395 15.90 

2 0.10 0.00790 19.64 

3 0.15 0.01185 22.81 

4 0.20 0.01580 25.55 

5 0.25 0.01975 27.96 

6 0.30 0.02370 30.11 

7 0.35 0.02765 32.06 

8 0.40 0.03160 33.84 

9 0.45 0.03555 35.47 

10 0.50 0.03950 36.99 

11 0.55 0.04345 38.39 

12 0.60 0.04740 39.71 

13 0.65 0.05135 40.95 

14 0.70 0.05530 42.11 

15 0.75 0.05925 43.21 

16 0.80 0.06320 44.25 

17 0.85 0.06715 45.24 

18 0.90 0.07110 46.18 

19 0.95 0.07505 47.08 

20 1.00 0.0790 47.93 

 

By using equation (19), the typical equation for 

vertical column on the j
th 

will be solved as follows:  
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For           we have 
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Computation of a Tridiagonal Matrix for Second 

Iteration  

By using equation (20), the typical equation for 

horizontal row on i
th

 will be solved as follows: 
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Simplifying equation (28), we have  
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Substituting boundary conditions into equations (31), 

(32) and (33) with the value of      : 
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In matrix form, equations (34), (35) and (36) become 
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Applying elementary row-reduce operation in 

equation (37), we have 

[
        
         
        

] [

    
 

    
 

    
 

]  [
       
        
       

]    

                                                   

Such that 

[
        
         
       

] [

    
 

    
 

    
 

]  [
       
        
         

]   

                                                                            (38) 
 

Using backward substitution, equation (38) yields 
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Table 4a: First Iteration (time = 18.25 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 52.9401 56.6667 56.6667 50.0000 

65.0000 60.2817 60.0000 60.0000 60.0000 

75.0000 65.4407 63.3333 63.3333 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4b: Second Iteration (time = 36.5 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 47.6421 52.9024 53.8630 50.0000 

65.0000 60.4728 60.0397 60.0033 60.0000 

75.0000 69.6397 66.8695 66.1280 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4c: Third Iteration (time = 54.75 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 44.1286 50.3371 51.9774 50.0000 

65.0000 60.4499 59.3371 60.0029 60.0000 

75.0000 72.4531 60.8379 67.9914 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4d: Fourth Iteration (time = 73.00 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 41.3571 47.8073 50.3024 50.0000 

65.0000 60.3349 58.8382 59.9025 60.0000 

75.0000 74.2383 65.7846 69.1432 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4e: Fifth Iteration (time = 91.25 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 39.4815 46.0803 49.0816 50.0000 

65.0000 60.1166 58.8387 59.7525 60.0000 

75.0000 75.4006 69.0414 69.8902 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4f: Sixth Iteration (time = 109.5 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 37.9523 44.4588 48.0720 50.0000 

65.0000 59.9669 58.7872 59.6483 60.0000 

75.0000 76.6566 71.5580 70.8693 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4g: Seventh Iteration (time = 127.75 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 36.6362 43.3811 47.3839 50.0000 

65.0000 56.5574 58.8778 59.5721 60.0000 

75.0000 78.5307 73.2390 71.5070 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4h: Eighth Iteration (time = 146 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 35.5837 42.3569 46.7500 50.0000 

65.0000 57.6131 58.7311 59.5166 60.0000 

75.0000 78.4569 71.6687 72.1890 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

 

 

Mathematical Analysis of Soil Structure…                                 70 
 



 

Table 4i: Ninth Iteration (time = 164.25 days) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 35.0178 41.5832 46.3184 50.0000 

65.0000 58.1863 57.8094 59.4641 60.0000 

75.0000 78.5417 65.1504 72.3871 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Table 4j: Tenth Iteration (time = 164.25 s) 

0.000 10.0000 20.000 30.0000 40.0000 

25.0000 34.5198 40.9087 45.9100 50.0000 

65.0000 58.4392 57.2461 59.3053 60.0000 

75.0000 78.3885 69.1425 72.3086 70.0000 

120.0000 110.0000 100.0000 90.0000 80.0000 

 

Conclusion  

This study has presented the mathematical analysis of 

soil structures using two-dimensional consolidation 

equations. To model this phenomenon, the finite 

difference approach has been utilised to solve the 

problem.  

 

The following were drawn out as the concluding part 

of this research work:  

 

a. The procedure developed used the information in 

Table 1 for Pore Water Pressure (PWP) and Depth 

Time Grids (DTG) for the two-dimensional 

consolidation equation. Then, the finite difference 

technique, subjected to non-uniform initial excess 

pore water pressure distribution was employed, 

which gave excellent agreement with the work of 

R. L. Craig (2007). It was discovered that the 

degree of consolidation of any clay layer at a 

certain time depends upon the initial excess pore 

water pressure (Table 2). 

b. The Average Degree of Consolidation (Uave), 

using 20 steps was also investigated. The Average 

Degree of Consolidation (Uave) directly varies with 

respect to the Time factor (Tv), as the time step (t) 

increases (Table 3). 

c. The computation of the tridiagonal matrix, using 

10 iterations (Tables 4a–4j), with time interval of 

18.25 days showed that excellent results could be 

obtained by increasing the mesh refinement for 

both the time and the depth.  

d. The degree of consolidation and excess pore water 

pressure depend widely upon the characteristics of 

the clay layer, such as coefficient of consolidation 

(Cv) and layer thickness (H). 

e. The Alternating Direction Implicit (ADI) finite 

difference method is a very good method. It is 

convergent and unconditionally stable (Tables 4h–

4j). 

f. The results obtained in this work are in agreement 

with the existing ones especially the work of R. L. 

Craig (2007).  

References 

Barron, R. A. (1948). The influence of drain wells on 

the consolidation of fine-grained soils. 

Trans. Am. Soc. Engr., 113: 718–742. 

Bartholomeeusen, G. (2003). Compound shock waves 

and creep behaviour in sediment beds. 

University of Oxford, Oxford, UK, p. 210. 

Bartholomeeusen, G., Sills, G., Znidarcic, D., Van 

Kesteren, W., Merckelbach, L. M., Pyke, 

R., Carrier, W. D., Lin, H., Penumadu, D. 

and Winterwerp, H. (2002). Numerical 

prediction of large strain consolidation.  

Géotechnique, 52(9): 639–648. 

Been, K. (1980). Stress strain behaviour of a cohesive 

soil deposited under water. University of 

Oxford, Oxford, United Kingdom. 

Been, K. and Sills, G. (1981). Self-weight 

consolidation of soft soils: an experimental 

and theoretical study. Géotechnique, 31(4): 

519–535. 

Bürger, R., Damasceno, J. J. R. and Karlsen, K. H. 

(2004). A mathematical model for batch 

and continuous thickening of flocculated 

suspensions in vessels with varying cross-

section. Int. J. Miner. Process, 73(2): 183–

208. 

Carillo, N. (1942). Differential equation of a sliding 

surface in an ideal saturated plastic soil. J. 

Maths. Physics, 21(1): 1–5. 

Coe, H. S. and Clevenger, G. H. (1916). Methods for 

determining the capacities of slime settling 

tanks.  Trans. AIME, 55: 356–384. 

Craig, R. F. (2007). Soil Mechanics.  Van Nostrand 

Reinholdt (UK), Co. Ltd. Seventh Edition. 

Das, B. M. S. and Herbich, J. B. (1991). Principles of 

Geotechnical Engineering. Coastal 

Engineering Handbook. 

Das, B. M. (2008). Advanced Soil Mechanics, 

Washington, New York, London. 

Davis, E. H. and Raymond, G. P. (1965). A non-linear 

theory of consolidation. Géotechnique, 

15(2): 161–173. 

Fitch, B. (1966). Current theory and thickener design.  

Ind. Eng. Chem., 58(10): 18–28. 

Huerta, A. and Rodriguez, A. (1992). Numerical 

analysis of non-linear large-strain 

consolidation and filling.  Comput. Struct., 

44(1): 357–365. 

Imai, G. (1981). Experimental studies on 

sedimentation mechanism and sediment 

formation of clay materials. Soils Found. 

21(1): 7–20. 

Imai, G., Hawlader, B. C. (1997). An elasto-

viscoplastic analysis of self weight 

consolidation during continuous 

sedimentation, Computer Methods and 

J. Sci. Res. Dev. 2017, 17(1): 65-72                     71 



 

Advances in Geomechanics: Proceedings 

of the International Conference on 

Computer Methods and Advances in 110 

Geomechanics. A. A. Balkema, Arizona, 

USA, 1065. 

Koppula, S. D. and Morgenstern, N. R. (1982). On the 

consolidation of sedimenting clays. Can. 

Geotech. J., 19(3): 260–268. 

Kynch, G. J. (1952). A theory of sedimentation.  

Trans. Faraday Soc., 48: 166–176. 

Liu, J. C. and Znidarčić, D. (1991). Modeling one-

dimensional compression characteristics of 

soils. J. Geotech. Eng., 117(1): 162–169. 

McRoberts, E. C. and Nixon, J. F. (1976). A theory of 

soil sedimentation. Can. Geotech. J., 13(3): 

294–310. 

Mikasa, M. and Takada, N. (1984). Self-weight 

consolidation of very soft clay by 

centrifuge, sedimentation consolidation 

models—predictions and validation, ASCE, 

121–140. 

Schiffman, R. L. (1982). The consolidation of soft 

marine sediments.  Geo-Mar. Lett., 2(3): 

199–203. 

Schiffman, R. L. (2001). Theories of Consolidation.  

University of Colorado, USA. 

Seneviratne, N. H., Fahey, M., Newson, T. A. and 

Fujiyasu, Y. (1996). Numerical modelling 

of consolidation and evaporation of slurried 

mine tailings. Int. J. Numer. Anal. Methods 

Geomech., 20(9): 647–671. 

Sills, G. (1998). Development of structure in 

sedimenting soils.  Trans. R. Soc., 356: 

2515–2534. 

Somogyi, F., Carrier III, W. D., Lawver, J. E. and 

Beckman, J. F. (1984). Waste phosphatoc 

clay disposal in mine cuts, in 

Sedimentation consolidation models: 

predictions and validation. (Eds. Yong, R. 

N. and Townsend, F. C.), ASCE, New York, 

545–580. 

Tan, S. A., Tan, T. S., Ting, L. C., Yong, K. Y., 

Karunaratne, G. P., Lee, S. L. (1988). 

Determination of consolidation properties 

for very soft clay. ASTM Geotechnical 

Testing Journal, 11(4): 233–240. 

Terzaghi, K. (1943). Theoretical soil mechanics.  John 

Wiley and Sons, Inc. New York, 

Znidarčić, D., Schiffman, R. L., Pane, V., Croce, P., 

Ko, H. Y. and Olsen, H. W. (1986). The 

theory of one-dimensional consolidation of 

saturated clays Part V: Constant rate of 

deformation testing and analysis, 

Géotechnique, 36(2): 227–237. 

 

 

 

 

 

 

Mathematical Analysis of Soil Structure…                                 72 
 


