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Abstract 

Bearings-only target tracking is a nonlinear estimation problem often addressed by linearised filters where the 

uncertainty in the sensor and motion models is typically modeled by Gaussian densities. In this paper, a particle 

filter or sequential Monte Carlo method is developed, based on student-t distribution, which is heavier tailed 

than Gaussian’s and hence more robust. The t-distribution-based particle filter provides an approximate solution 

to nonlinear non-Gaussian estimation problems. To estimate the target state based on samples, an expectation 

maximisation (EM)-type algorithm was developed and embedded in a student-t particle filter. The expectation 

step was implemented by the particle filter. In this step, the distribution of the states and the state vector were 

estimated. Consequently, in the maximisation step, the nonlinear observation equation was approximated as a 

mixture of the Gaussian and student-t models. A bearings-only tracking problem was simulated to present the 

implementation of the particle filter algorithm based on both the mixture of the Gaussian model and student-t. 

Simulations and real life data taken from the digital global system for mobile communications (GSM) real-time 

data-logging tracking system showed that the student-t-based particle filter significantly outperformed the 

Gaussian mixture filter and successfully accommodated a nonlinear model for a target-tracking scenario.  
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Introduction 

Bearings-only target tracking is the problem of 

generating an inference engine on the state of a target 

using a sequence of observations in time, which is to 

recursively estimate the probability density function 

of the target state. It is a nonlinear estimation problem 

often addressed by linearised filters modelled by 

Guassian densities. This problem has attracted interest 

over past decades as it arises in many modern 

applications, including: robots localisation, visual 

tracking, radar tracking and satellite navigation. 

  

In addition, it involves tracking an object (typical 

examples include ships, planes and other moving 

vehicles). A successful target-tracking depends on an 

effective extraction of the useful information about 

the target state from available observations. The 

tracking problem can be solved by recursively 

calculating some degrees of belief in the target state, 

taking different values, given available observations. 

Thus, a construction of the conditional probability 

density function of the target state is generally 

required. Since the target state uncertainty and the 

measurement-originated uncertainty are the two major 

unavoidable obstacles for target tracking, a good 

model of the target motion will effectively facilitate 

the design of the required tracking algorithm.  

 

This paper focuses on a student-t distribution-based 

particle filter, which is heavier tailed than Gaussians 

and provides an approximate solution to nonlinear 

non-Gaussian estimation problems. 

 

The commonly used models are the state-space model 

described in the following forms: 
 

    (    )                                                             (1) 
 

    (  )                                                                  (2) 
 

where   and   are either linear or nonlinear functions, 

   and    represent the independent and identically 

distributed (i.i.d) process and measurement noise 

sequence, respectively.    and    denote the target 

state vector and the measurement at sample  time  , 
respectively. Models represented by equations (1) and 

(2) are referred to as state-space models. This includes 

such models as the bearings-only tracking model. 

 

Target-tracking using bearings-only measurements is 

a difficult task due to the unobservability of elements 

of the target’s state and high degree of the nonlinear 

measurement process (La Scala et al., 2007). The 

filtering algorithms involve a nonlinear measurement 

process, which when linearised can lead to time-

varying parameter biases as explained by Aidala 

(1979). The common estimation algorithms used for 

bearings-only target-tracking are: Least Squares 

(batch and recursive forms), Maximum Likelihood 
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Estimator, Extended Kalman Filter (EKF) and Particle 

Filters or Bayesian Methods.  

 

Most researchers in the field of bearings-only tracking 

have concentrated on tracking a non-manoeuvring 

target (Aidala and Hammel, 1983; Robinson and Yin, 

1994; Bar-Sharlom et al., 2001; Clark et al., 2007). 

Due to inherent nonlinearity and observability issues, 

it is difficult to construct a finite-dimensional optimal 

filter even for this relatively simple problem. As for 

the bearings-only tracking of a manoeuvring target, 

the problem is much more difficult.   

 

Early research projects focused mainly on analytical 

derivations for the observability criteria of the 

estimation process, comparisons of the convergence 

properties and performance of the different types of 

method used for target-tracking. Since bearings-only 

target estimation involves a nonlinear measurement 

process, filtering and observability complications 

arise. Lindgren and Gong (1978) analysed the 

observability associated with a least-squares 

estimation approach and showed that for a constant 

velocity target and a constant velocity vehicle moving 

in a 2-D plane, the target estimation is unobservable 

until the vehicle executes a manoeuvre. Kalman 

Filtering as a method of estimation was used by 

Nardone et al. (1984).  

 

An extended Kalman filter (EKF) approach needs to 

be used instead of the Kalman filter since the 

bearings-only estimation problem involves nonlinear 

measurements. The EKF is one of the most widely 

used methods but it is unable to relinearise the 

nonlinear system when new measurements become 

available and therefore gives an unsatisfactory 

performance. This has given rise to refinements of the 

EKF; for example, modified polar coordinates EKF 

(Aidala and Hammel, 1983) and the shifted Rayleigh 

filter (SRF) (Clark et al., 2007). However, both of 

these EKF variants can only track a single mode of 

the posterior probability density function of the target 

state.  

 

A multi-hypothesis EKF (MHEKF) was proposed by 

Kronhamn (1998) to track the multiple hypothesis of 

target state. The MHEKF described by Kronhamn 

(1998) determines a fixed number of EKFs at the first 

available measurement. This idea was extended by 

Musicki (2009) so that the filter bank can dynamically 

change its size at each time step based on the current 

measurement likelihood. Nerurkar et al. (2009) and 

Huang et al. (2010) proposed bank of maximum, a 

posteriori (MAP) estimator, which selects most 

probable hypotheses of the target trajectory based on 

optimality at each time step.  

A pseudolinear filter formulation was proposed by 

Aidala and Nardone (1982). It attempts to linearise the 

dynamics and measurement models. However by 

linearising the dynamics, the noise becomes non-

Gaussian, which when propagated through the filter 

causes estimation bias.  

 

For the bearings-only tracking problem, the bias is 

introduced only in the position estimate and is highly 

dependent on the geometry of the vehicle 

manoeuvres, suggesting that the estimation 

performance can be improved by the proper design of 

the vehicle trajectory. Musicki and Evans (2006) and 

Musicki (2007) examined the effects of nonlinearity 

and observability on the degree of difficulty of the 

single-sensor bearings-only tracking problem by a 

Gaussian sum measurement approximation filter. 

Aidala and Hammel (1983) proposed the modified 

polar coordinates (MPC) filter. The filter uses an EKF 

algorithm with a state vector choice based on polar 

coordinates that attempts to separate the observable 

and unobservable components of the estimated state 

by using a different coordinate system. The resulting 

filter is stable and asymptotically unbiased. The 

modified polar coordinate filter shows the dependence 

of the target estimation on the vehicle manoeuvres; 

once again suggesting that the estimation can be 

improved by designing a good trajectory.   

 

Lately, a variant of the MPC system, called the log 

polar coordinate (LPC) basis, was proposed by 

Brehard and Le Cadre (2006). As pointed out by 

Brehard and Le Cadre (2006), an advantage of LPC 

over MPC is that an EKF using LPC is more robust 

than the one that makes use of MPC (La Scala et al., 

2007). De Vlieger (1992) used a piecewise linear 

model of the target motion and a Maximum 

Likelihood Estimator (MLE) approach for target 

tracking. He used numerical methods to condition the 

measurement model to increase the observability of 

the estimation. Goshen-Meskin and Bar-Itzhack 

(1992) derived the observability requirements for 

piecewise constant linear systems. Tao et al. (1996) 

showed that for a MLE approach, it is important to 

consider the correlation of the noise and that ignoring 

it degrades the performance of the estimation.  

 

Several modifications to the classical estimation 

algorithms have been explored. Some researchers 

have attempted to smoothen the trajectory within the 

constraints of a known target behaviour model. Other 

efforts consist of designing multiple filters for 

different known target scenarios and using the 

statistical properties of the innovation to switch 

between the algorithms. Another approach has been to 

support multiple Kalman filters simultaneously and 
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develop an estimate by combining all the filters. Later 

work by Bar-Shalom et al. (2002) has focused on 

using interacting multiple models (IMM). These 

algorithms employ a constant velocity (CV) model 

along with manoeuvre models to capture the dynamic 

behaviour of a manoeuvring target scenario. Le Cadre 

and Tremois (1998) modelled the manoeuvring target 

using the CV model with Gaussian noise and 

developed a tracking filter in the hidden Markov 

model framework. Radhakrishnan et al. (2010) 

proposed the coordinated turn (CT) model along with 

the EKF to track all possible dynamics such as 

velocity, acceleration and coordinated turns of the 

manoeuvring targets.  

 

Particle filtering or sequential Monte Carlo techniques 

have also been explored by Liu et al. (2002), Ristic et 

al. (2004), Clark et al. (2007), Gustafsson (2010), 

Haluk (2011) and Dosso and Wilmut (2013). Particle 

filters have the advantage of being able to deal with 

nonlinear systems and non-Gaussian noise models 

making them particularly well-suited to bearings-only 

tracking. Researchers in the field of bearings-only 

tracking have shown that particle filters can also 

accommodate unknown and stochastic target models, 

making them more versatile than classical filters (Liu 

and Hao, 2013; Li and Zhou, 2013; Tirri et al., 2014; 

Warner et al., 2015; Li et al., 2015). However, they 

require increased computational resources and, for 

fast convergence, need a fairly accurate description of 

the measurement likelihood function and a good 

initial distribution on the estimated target location. 

 

Bearings-only tracking involves estimating the target 

states based on angle measurements at a sensor node. 

The target is assumed to move in the x–y plane and to 

follow a constant-velocity motion model (Bar-Shalom 

and Fortmann, 1988) with a state update period of 1 s. 

The state vector    
contains the positions and 

velocities of the object in the x–y directions, 

respectively: the target state at time  
 

is    

(           ̇)̇
 , where    

and    
represent the target 

positions and  ̇  
and  ̇  

represent the corresponding 

velocities. One possible discretisation of this model is 

given by Gordon et al. (1993): 
 

                                                        (3) 

The equation of the observed bearing,   , is 

        .
  

  
/                                                        (4) 

where    (      )
 
,   (

    
    
    
    

)  and    

               

(

 
 

  

 
 

  

 
  

 

  )

 
 

 

   represents system noise and is Gaussian distributed 

with covariance ∑   
     where    is a       identity 

matrix, T = 1 s is the normalised sampling period,    
is the observed bearing of the object measured by the 

sensor at time   and    represents a Gaussian 

measurement noise with  mean zero and variance   
 . 

 

Before measurements are taken, the particle filter 

recursion is started with initial state vector in the form 

of a four-dimensional Gaussian variable with known 

mean and covariance matrix. The model is four-

dimensional and nonlinear due to a transcendental 

function in the observation equation. It has been 

shown through intense simulations, by Gordon et al. 

(1993), that particle filters are much more efficient for 

this problem than the traditional EKF. The bearings-

only tracking (BOT) problem is illustrated in Figure 1. 
 

 
Figure 1: The Bearings-Only Tracking (BOT) problem 

 

In this paper, the particle filter is developed based on 

the student t-distribution for nonlinear bearing-only 

tracking problem and compared with the normal 

mixture-based particle filter of Kim and Stoffer 

(2008). 

 

Methods of Estimation 

The Expectation-Maximisation Algorithm 

State estimation in a nonlinear state-space dynamical 

system consists of estimating the state data vector 

using a sequence of noisy measurements given by the 

model in equation (2). The main idea in EM-based 

algorithms is to solve the state estimation problem in 

the presence of model uncertainty in two iterative 

steps. Starting from some initial parameters  ( ) the 

algorithm iteratively applies:  

E-step: Compute the expected likelihood,  ( | ( ))                  

                 ( | )   (    ( | )|   )                                        
M-step: Choose  (   ), the parameter values that 

maximise the function,  ( | ( )).  
 

In the E-step of the proposed algorithm, an 

approximation of the desired distribution of the states 

given in the measurements is formulated. This 
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distribution is then used to estimate the states. In 

nonlinear systems this conditional density is generally 

non-Gaussian and can be quite complex. An SMC 

(particle filter) algorithm (Doucet et al., 2001) was 

used to estimate and recursively update this 

distribution in time. This aided the convergence of the 

algorithm to the global optimum. In the maximisation 

(M) step, the unknown measurement process was 

approximated by fitting the observations to a student-t 

model using the current estimates of the states.  

 

Sequential Monte Carlo Methods 

Since the introduction of SMC in the 1960s, it has 

become an emerging methodology for the nonlinear or 

non-Gaussian state-space models. SMC methods or 

particle filters are a class of recursive simulation 

methods for solving filtering problems (Doucet et al., 

2001; Gordon et al., 1993). 

 

Let *      
( )        

( )          + be samples and 

associated weights approximating the density function 

 (      |      ) *      
( ) +   

  is a set of particles with 

associated weights *      
( ) +   

  with ∑     
( )

       , 

then the density function is approximated by  

       (      |      )    ∑     
( ) 

    (         
( ) ) 

  ( ) signifies the Dirac delta role.  
 

The particle approximation *  
( )   

( )+   
   is also 

transformed into an equally weighted random sample 

from  (      |      ) by sampling, with replacement 

from the discrete distribution  *  
( )    

( )+   
 .  

 

Particle Filter Algorithm  

Kitagawa and Sato (2001) and Kitagawa (1996) gave 

an algorithm for filtering in general state-space 

models thus: 

Monte Carlo filtering for general state-space models 

1.  For         , generate a random number   

       
( )     (  )     

2.  Repeat the following steps for        : 

a.  For        , generate a random number  

  
( )     ( ) 

b. For        , compute   
( )   (     

( )     
( )
)   

 
c. For        , compute    

( )   (   |  
( )
)   

 
d. Generate   

( )
         by resampling 

   
( )
     

( )
 

3. This Monte Carlo filter returns *  
( )          

         + so that  ∑
 

 

 
    (     

( )
)   (  |  ). 

 

Particle Smoothing Algorithm  

Let *  
( )   

( )+   
  be a set of particle smoothers and 

associated weights approximating the density function  

 (  |  ), then the density function is approximated 

by  (  |  )  ∑   
( ) 

    (     
( )
). 

 

The problem with smoothened estimates is 

degeneracy. Godsill et al. (2004) suggested a new 

smoothing method (called particle smoother using 

backwards simulation). The method assumes that the 

filtering has already been performed. The particles 

and associated weights, *  
( )+   

 , *  
( )+   

  can thus 

approximate the filtering density by   

                   

 
 (  |  )  

∑   
( ) 

    (     
( )
)

∑   
( ) 

   

 

The following is the algorithm from Godsill et al. 

(2004):  

Particle smoother using backwards simulation 

Suppose weighted particles   
( )
   

( )        
 
are 

available for        .  For        , 

1. Choose    
( )
   

( )
 
 
with probability    

( )
  

2. For      to 1      

a.  Calculate    |   
( )

   
( )
 (    

( ) |   
( )
)
 
for each   

b. Choose    
( )
     

( )
  with probability    |   

( )
 

3.      
( )
   (   

( )
   

( )
) is an approximate realisation 

from   (  |  ). 
 

Sequential Monte Carlo Expectation Maximisation 

(SMCEM) for Bearings-Only Tracking 

The entire procedure based on student-t distribution 

consists of three main steps: filtering, smoothing and 

estimation. With the output of filtering and smoothing 

step, an approximate expected likelihood is then 

calculated. 

 

Filtering Step  

The algorithm below for the filtering and smoothing 

steps shows an extension of the results of Godsill et 

al. (2004) and Kim and Stoffer (2008).  

1.  Generate    
( )    (     

 )    
2.  For           

a.  Generate a random number  

      
( )    (   )          

b. Compute    
( )       

( )     
( )

  

c. Compute  

       
( )    (  |  

( ))    
  
 .  

  
      

   
/
 
   

 
  

d. Generate   
( ) by with weights,   

( )
. 

Smoothing Step  

Suppose that equally weighted particles *  
( )
+   

      from  (  |  ) are available for        
 
 

from the filtering step: 

1.  Choose [  
( )]  ,  

( )
-  with probability  
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2.  For      to 0 

a. Calculate  

  |   
( )

    .    
( ) |  

( )
/    

   ( 
(    
( )

       
( )

) 

  
*

 

√  (   )

 0
   

 
1

 .
 

 
/
  

    
    

                                (  
  
   

     
( )

   
)

 
   

 

 for each    

 
b. Choose  [  

( )]  0  
( )
1  with probability   |   

( )
 

3.      
( )
   *(   

( )
     

( ))+ is the random sample from  

      (       |  )  
4.  Repeat steps (1)–(3) for        

  
and calculate 

      ́ 
  

∑   
( ) 

   

 
      ́ 

  
∑ (  

( )
  ́ 

 )  
   

   
   

      ́      
  

∑ (  
( )
  ́ 

 )(    
( )

  ́   
  

   

 
 

 

      0  
  
     

   
1
 
   

 
            

          
  (   )

(   )∑    
           [  

  
     

   
]
  

 
   

 

 

Estimation Step  

Herein, (       ) is viewed as unobserved and the 

EM algorithm is applied. The procedure performed in 

this algorithm consisted of running a filtering and 

smoothing step for the given parameters. 

 

Using equations (3) and (4), the proposed technique 

for target-tracking was applied. The state update was 

used to propose new particles. This provided a sub-

optimal recursive estimate of the target position in the 

    plane. As the target is observed in its motion, 

new data    accumulate, along with new parameters 

 ̈   ̈ . The vector of the unknown at time   is       
    ̈    ̈     ̈   ̈ , and the data are      
(       ). Therefore, the target distribution evolves 

in an expanding space,   .  

 

As   increases, the aim here is to maintain a set of 

sampled particles in   , which can be used to estimate 

aspects of the distribution of interest. In particular, 

these particles are used at any given time point    to 

approximate the conditional distribution for the 

current state of the object, given that the data,       
accumulated up to that point. The procedure for the 

BOT problem is summarised below: 
 

Given the observed data    at    

For           sample particles,   
( )

 are drawn 

from the density 

  
( )      (  

( )|    
( ) ) 

 
using equation (3): 

 

  
( )      

( )   ̇   
( )     

( )     ̇ 
( )    ̇   

( )      
( )      

( )

     
( )   ̇   

( )     
( )     ̇ 

( )

   ̇   
( )      

( )  
 

 

The weights are updated recursively using 

 ̂ 
( )      

( )    (  |  
( )) 

where     |  
( )                   ( ). 

Subsequently, evaluating this distribution at time   for 

the parameters estimation, by using the EM algorithm 

and SMC, and then calculating the output: 

 ̇  ∑  
( )

 

   

  
( )  ̇ 

( )    ∑  
( )

 

   

 ̇ 
( )   

 ̇   ∑  
( )

 

   

  
( )
  ̇ 

( )
 ∑  

( )

 

   

 ̇ 
( )
  

  

   

Therefore, the mean estimate of the target state and 

the covariance matrix of the estimate error are 

approximated by:     ∑   
( ) 

     
( )

,  

                

     

∑    ∑   
( )
( 

     
( )
   )(  

( )
   )

  

 

Results  

A bearings-only tracking problem was simulated to 

present the implementation of the SMCEM algorithm 

based on both the mixture of Gaussian’s model of 

Kim and Stoffer (2008) and the student-t. A target 

trajectory and associated measurements was generated 

according to equations (5) and (6) with the parameter 

values √  
        √  

       , the initial state 

of the target    (          )  and covariance 

     (                )T. The time between the 

successive measurements was       and a single 

bearing measurement was obtained in each time step. 

 
 

Figure 2: Three scenarios for the BOT:  Representation 

of the trajectories of the true target path (shown by 

squares), MoN (shown by asterisks) and the student-t 

estimate (shown by dotted lines)  

 

Figure 2 gives the true target path in the      plane, 

with the position of the target at each time being 

0 100 200 300 400 500 600 700 800 900
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shown by a square and the mixture of normal by an 

asterisk. The result of applying the SMCEM with 

       particles is shown in Figure 2. The number 

of particles was chosen such that further increase in   

does not bring any significant improvement in the 

tracking performance. The cross symbol gives the 

student-t estimates such that the estimate moves 

towards the true target path. The performance is 

evaluated using the mean square error (MSE) for each 

time, according to Sanjeev et al. (2004). 

   ( )  
 

 
∑ (  

     
      )

                                (5) 

where    denotes the estimate at time  ,   is the total 

number of realisations over which the MSE is 

averaged. The MSE values (11.0112 and 7.2197 for 

mixture normal and student-t, respectively) are 

obtained independently for each element of the state 

in the BOT problem. For the student-t-based filter, no 

tracks diverged. It can be seen that the accuracy of the 

position estimation of the student-t particle filter is 

significantly higher than that of the normal mixture. 

 

Dynamic Modeling of a Vehicle Tracking 
The proposed estimation technique was also applied 

to the problem of tracking a moving vehicle. Data was 

taken from the digital GSM real-time data logging 

tracking system. From the data collected, the vehicle’s 

position    (     ) was estimated at time  , and its 

velocity   . Also at each time step a new 

measurement    was obtained.  

 

The velocity evolved over time according to 

               (  |    )                                                   (6) 

The vehicle moved, based on the evolved velocity, 

according to a dynamics model: 

               (  |       )                                            (7) 

The measurements were governed by a measurement 

model:    (  |  )                                                      (8) 

And the measurement likelihood factor was  

               (  |  )  ∏ (  |  )
 
                               (9) 

At each time step  , an estimate of the proposed 

technique about the tracked vehicle trajectory and 

velocity was produced based on measurements: 

                  (       |   )                                  (10)                                                           
   

                                                            

 

Equation (10) encodes the vehicle motion and was 

approximated using the student-t distribution. The 

measurement update was carried out by computing the 

importance weights    
for all the particles. 

 

The results for this case are presented in Figure 3. The 

student-t-based SMCEM algorithm was able to track 

the true path of the vehicle being tracked and 

remained stable and converged. This therefore shows 

that the accuracy and convergence of the estimation is 

improved by increasing the information provided by 

the measurements.  
 

 
 

Figure 3:  Estimates of the vehicle being tracked 

 

Discussion 
In this paper, a student-t particle filter algorithm for 

solving problems for nonlinear non-Gaussian state-

space estimations when the observation model is 

uncertain is proposed. The goal was to considerably 

improve the tracking performance of a constrained 

tracking scenario using student-t particle filter, which 

is heavier tailed than Gaussian’s and hence more 

robust. A bearings-only tracking (BOT) problem was 

simulated to present an implementation of the 

SMCEM algorithm based on both the mixture of the 

Gaussian’s model of Kim and Stoffer (2008) and the 

student-t.  

 

The simulated results, shown in Figure 2, for three 

scenarios for the BOT – the representation of the 

trajectories of the true target path (shown by a 

square), MoN (shown by an asterisk) and the student-t 

estimate (shown by dotted lines) – infers that the 

estimation of the student-t particle filter significantly 

outperformed that of the Gaussian’s mixture filter.  

 

The proposed estimation technique was also applied 

to the problem of tracking a moving vehicle. The 

results presented in Figure 3 reveals that the student-t-

based SMCEM algorithm is able to track the true path 

of the vehicle being tracked, remains stable and also 

converges. Thus, the proposed estimation technique is 

capable of approximating a wide range of non-

linearities in the measurement and state transition 

processes. Also, implementing the E-step with a 

particle filter provides the possibility of employing the 

algorithm in the presence of non-Gaussian noise. 

 

Conclusion 

It has been shown, in this paper, that a student-t 

distribution-based particle filter provides a much 

better performance than the normal mixture-based 

particle filter. An EM-type algorithm for solving a 

joint estimation–identification problem for nonlinear 

non-Gaussian state-space estimation when the 

observation model is uncertain is proposed. The 
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expectation (E) step is implemented by the particle 

filter. Within this step, the distribution of states, given 

the measurements as well as the state vectors, is 

estimated. Consequently, in the maximisation (M) 

step, the nonlinear measurement process parameters 

are approximated as a mixture of normal model and as 

a student-t model. The SMCEM algorithm based on 

both the mixture of Gaussian’s model of Kim and 

Stoffer (2008) and the student-t was used to solve a 

nonlinear bearing-only tracking problem. It has been 

shown that the accuracy of the position estimation of 

the student-t filter is significantly higher than that of 

the normal mixture. Additionally, the method was 

applied to real life data taken from the digital GSM 

real-time data logging tracking system. It was again 

shown that the student-t-based algorithm was 

successful in accommodating a nonlinear model for a 

target-tracking scenario. 
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